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Asymptotic theory of traffic jams
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Based on singular perturbation methods, an asymptotic theory of traffic jams of large amplitude is devel-
oped. Simple equations describing the form of traffic jams of large amplitude are found. The theory leads to
analytical formulas for thecharacteristi¢ i.e., intrinsic or unique, parameters of traffic flosuch as the
average velocity of the downstream front of a wide jam, as well as the flux, density and average vehicle speed
of the outflow from the jamwhich are independent of the road length, the vehicle density of the initial traffic
flow, or other initial conditions. Analytical investigations have been made that show that, in agreement with
earlier numerical resul{8. S. Kerner and P. Konhaer, Phys. Rev. B0, 54(1994], the boundarythreshold
flux at which a traffic jam can still exist is equal to the flux in the outflow from a jam. The manner in which
the shape of a traffic jam evolves due to changes in the initial vehicle density is analytically investigated.
Simple analytical formulas are obtained for the parameters of narrow traffic jams capable of forming in a
limited interval of vehicle densities. A comparison is also made between the results of the present analytical
theory of traffic jams, the theory of shock waves in gas dynamics, the classical Lighthill-Whitham-fieory
J. Lighthill and B. G. Whitham, Proc. R. Soc. London Ser229, 317 (1955] of kinematic waves, and the
recently discovered experimental features and characteristics of wide traffic jams in actual traffic.
[S1063-651X%97)06710-X

PACS numbeps): 47.54+r, 05.40+j, 89.40+k

[. INTRODUCTION in which the behavior of each individual vehicle is taken into
account(e.g., Refs[1,19-27). Various microscopic traffic
Traffic jams usually occur when the density of vehicles inflow models, as well as macroscopic traffic models, show a
traffic is high enoughe.g., Refs[1-3]). In particular, Trei- transition from an initially homogeneous to a jammed state
terer has found out that a traffic jam could spontaneously6,7,14—18,21—-3R A review of different traffic flow models
occur without obvious reason in a traffic flow and that ancan be found in the book by Helbing8]. In particular,
occurrence of the jam has been accompanied by a hysteregjgalitative results of investigations of jams by Komatsu and
phenomenori3]. Recently Kerner and Rehborn have found Sasa[33] based on the microscopic dynamical traffic flow
out from their experimental investigations of “wide” traffic model of Bandcet al. [26] are in agreement with the earlier
jams, i.e., jams that are considerably wider than widths otgnclusions, made by Kerner and Konbar[6], that the
both upstream and downstream jam's fronts, that the jamgarameters of the downstream front of wide traffic jams rep-
have somecharacteristic parametersvhich do not depend (egent the characteristics, i.e., intringimique parameters,
on initial condmons of traffid4,5]. These characteristic Pa- of a traffic flow. It should be noted that the property of jams
rameters ardi) the mean values O,f the 'flux, of the density, that some of their parameters are the characteristic param-
ar_1d O.f th.e__average speed of vehicles in Fhe OUtﬂO.W fro_m %ters of a system is also common for thdosolitonformed
wide jam; (i) the mean value of the density of vehicles in- in many active physical, chemical, and biological systems

side the jam; andiii) the average velocity of the jam’s . :
downstream front. These parameters can be almost the salggr a review, see Ref§34,35). A comparison be“’veef‘ the .
properties of jams and the properties of the autosolitons in

for different jams. In addition, for each of wide jams the ; . :
pysmal systems was given in REB6].

characteristic parameters can, on average, remain essentiafl . i ,
constant over time. Wide jams possess the mentioned prop- In this paper an asymptotic theory of Ia}rge-amphtude trgf-
erties if the following conditions are fulfilledi) traffic pa-  IC Jams which are commonly observed in experimental in-
rametergweather, other road conditions, eteemain essen- vestigations will be developed based on the mathematical
tially constant; andii) there are no hindrances for traffic in method of singular perturbations. The asymptotic theory of
the outflow from a wide jam, exactly, if a “free” traffic flow, jams will be presented in Sec. Il. In Sec. lll, simple formulas
where vehicles are able to change a lane and to pass, fier the characteristic parameters of a traffic flow are derived
formed in the outflow from the wide jarf,5]. based on this theory. An analytical investigation of evolving
The existence of characteristic parameters of traffic flowof jams will also be given in this section for a case in which
was first predicted, and theoretically investigated, by Kernethe initial density of vehicles is changed. Section IV contains
and Konhaser[6] in their numerical and qualitative analy- a comparison between the jam properties found in the pre-
ses of a macroscopic traffic flow model based on thesented theory, on the one hand, and the properties of shock
“Navier-Stokes-like” equation for a traffic floW7]. Besides waves in gas dynamicte.g., Ref.[37]), the properties of
a kinetic(macroscopigapproach to the study of traffic flows kinematics waveg38], and the experimental features of traf-
(e.g., Refs[7-19), there is also a “microscopic” approach, fic jams[4], on the other hand.
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Il. SINGULAR PERTURBATION THEORY As in the numerical investigations of jan8], it will be
FOR STATIONARY MOVING JAMS assumed in this paper that a functig(p) and a value in

Eq. (2) provide that there is a finite range of the densities
pc1<pn<pc, that corresponds to a case in which the traffic
1. Basic equations flow is brought into unstable homogeneous states by an in-
crease in the density. This instability occurs with respect to a
rowth of small long-wave nonhomogeneous perturbations
44] at a wave numbek=2x/L [7]. The condition for this
instability is[7,45]

A. Macroscopic traffic flow model

If the density of vehicles on a road is not too low and only
the average characteristics of their motion are of interest, th
traffic flow can be considered as a one-dimensional com
pressible flow of particleg9—12]. In this kinetic approach a
macroscopic model of traffic flow readig]

1 p dVv - 2 2_ 6
z?p &q CO dp p= T L ’ ( )
=0 (1) o N
therefore, the values,,,p.» Will satisfy the conditions
dv dv V(p)—v ,dp 8%v
T D=y m 2 O e\ 2172
Pt ox|=P — 7 G trge @ =P 2= ST =12 (@)
CO dp oo L
on=viL), 2 =% on=q(L.t). (3) ]
v(0H=v(L.b), X Ot_ﬁx Lt a0 =a(L.v). 2. Equations for stationary moving jams

To find the characteristic parameters of a wide jam on a road b d’?.;';ia:?'e r::grtllori]ggh titsael foh?rZZCti;Z%:e'Fe?rsa?fe;e\r/ji d?ef
it is sufficient to analyze the characteristic parameters of a J y P

large-amplitude stationary wide jam moving along a Circularj[‘?san _Ir%o;ﬂ,]n(? tﬁ:a ae CSQEI;T X)erl(;(i:z? er(:]r;g Ieeltcarscﬂsgsfggj?e a
road. Numerical investigations of jams and their physical- ™" a J ’

attributes[6] indeed demonstrate that the characteristic payarlablex:x—vgt Into Eqs.(_l)—(3)._|n this new system Qf.
rameters of both localized wide traffic jams in an open Syspoprdmates,_ the macroscopic traffic flow model describing
tem and the characteristic parameters of stationary wide jam%bjects moving at a velocity, takes the form
(wide clusters moving along a circular road are virtually the
same. Therefore, boundary conditiof8 can be used with
the macroscopic traffic flow model.

In Egs. (1)—(3) p(x,t) is the density (&p=p) and 5 J ; 7
v(x,t) is the average speed of vehicles=0), p is the ov o ovy _q_29P ov
maximum possible density on the roagk pv is the flux,L p[ o TTvg) ax}_p[v(p) v1=Co Gt o Gz
is the length of the road, and(p) is the speed-density rela- 9
tionship, i.e., a saf¢‘maximum and out-of-danger)’ speed N
which is achieved only in a traffic flow that is both time- a@nd conditiong3). In Eq. (8),
independent and homogeneous. In a homogeneous state of .
traffic flow, the density will be designated ag, the average 9" =pv—vy). (10)
speed awy, vh,=V(py), and the flux asy,, qn=pnvn-
V(p) is a monotonically decreasing function pf i.e., its
derivative[8—12,39

dp 9q*

gt ox ’ ®)

Here and subsequently the coordinaties measured in units
of ly=cq7, the time in units ofr, and the density in units
of p; the speed in units of ¢y, the coefficientu, will be

dV(p)/dp=0. (4)  defined as
In the numerical investigations of jams performed in Refs. M
[6,16,40—43 and in Sec. IV of this paper, the following '“O_an“)' (12)
functionV(p) in Eg. (2), which describes the properties of a
traffic flow, has been usdd]: It should be noted that in Eq9) the coefficientc, has been
_1 written in dimensionless form, i.e., it is equal to 1. However,
V(p)=v; [1+exp{p_pio)] —d} this coefficient shall be rgtained in the forrr_\ulas in explicit
b form to provide a convenient comparison with the results of
. B the work[6].
where d=11+ ex P~ Pio ' 5) For the tme—mdependent.functllon$x) andp(x), which
b describe stationary moving jams in the new system of coor-

R dinates, it is possible to deduce from E(®.and(3) that the
In Egs.(2) and(5), o, u, 7, v¢, pio, b andp are constant valueq*, Eq. (10), is independent of the coordinate
values which related to the given parameters of traffic
(weather, other road conditions, etf6,7,16. The physical q* =p(v—v4)=const, (12
meaning of the equation of motig®) and of the mentioned
parameters of the model have been considered in Refge., that the value of the average speed of vehiclesill
[16,40,41]. alone depend on the on the right-hand side of the formula
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q*

TCETR (13

p

It should be noted that, in accordance with Efj2), the
relation between the fluxj=pv and the densityp of the

stationary moving jam is represented by the linear expression

d=0* +puvy. As follows from Eqgs.(9) and(13), the corre-
sponding function® (x) which describe the possible shapes
of stationary moving vehicular jams satisfy the equafiéh

2

d2U % CO 1 dU F % _0
o T g H ax R v
(14)
and the boundary conditions
B dv _dv
v(0)=v(L), axl “axl (15
0 L
where
q q*
* — —
F(v,q*,vg) =0y V((v—vg)) vl. (16)

An additional condition which connects the functionéx)
with the corresponding value of* can be deduced from the
obvious integral conditiof7]

L

)

If in this condition formula(13) is taken into account for the
stationary case under consideration, then

p(x,t)dx=ppL. 7

L

)

Together with the boundary conditiori$5), Egs. (14) and

dX _Phl—
U(X)_Ug - q*

(18
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FIG. 1. The qualitative shape of the vehicle density and the
average vehicle speed distributions in a wideand in narromb)
jam stationary moving along a circular road.

and where the poink=X, is in the region containing the
sharp front(Fig. 1). In Eqg. (19), the solution forv(x) is
represented as a combination of the functéh(x) defined

on the interval B=x<x, and the function(?)(x) defined on

the intervalL=x>Xx,, because the smooth distributicns’

(X", o) andT@(x’, uo) in Eq. (19) can be sufficiently dif-
ferent in the regions upstream and downstream from the
sharp front.

According to the singular perturbation theo46], the
functions v™(¢, ) and v®(Z, o) exponentially decay
with increasing|{], i.e.,

v (=2,u0)=0, v@(+%,u0)=0. (21)
Furthermore, at the point=x,, the functionsv*)(x) and
v@)(x) satisfy the boundary conditions

do@
dx

dv®

U(l)(XO):U(Z)(XO)a - dX

(22

X0

Let us seek the functions™(x’,uo), andv™ (£, ue)

(18) pose an eigenvalue problem whose spectrum defines thgyolved in Eq.(19), and the values, and g* in series

possible values of the velocity,, and whose eigenfunctions
v(x) determine the shapes of different jams.

B. Equations for smooth and sharp distributions

Let us consider a case in which the parametgrin Eq.
(14) is small, i.e.,up<<1. Then, according to the theory of
singular perturbation$46], a solution of Eq.(14) can be
represented as a combination afmooth distributions
v(x',ug) characterized by the length (Le., Iy) and the
sharp distributions) (£, ) characterized by the length,

(i.e., wolo):
v()=0™(x), ™M)= (X', 10) +v™ (L, o),
m=1,2, (19
where
(=(X—X) o, X' =X—Xo;

m=1 for O0<x<x, and m=2 for L=x=x,, (20

form:
V(X 0) =G (X) + g (X) + G ()
+-o, m=1,2, (23)
(L, o) =05 () + oo™ (§) + ugoTV (D) -
m=1,2, (24)
Vg=Ugot MoUg 1t MoUgat " (29
Q% =qg + pod¥ +ugas +- -+ . (26)

By substituting expansiond.9) and(23)—(26) into Eq.(14),
into boundary condition$l5), (21), and(22), and into inte-
gral condition(18) and then performing the singular pertur-
bation method, it is possible to find, in the zeroth approxi-
mation in uq, the equation for the smooth distributions
7iM(x’) (see the Appendix



c dvy™ - 0
—~| - + 7 b = b
Ao (vgn)—vg,o)z ax’ (vo "o Vg0
m=1,2, 27
where
- SH e} ~
FOM g% vg0)= = {V( = )—v(m)},
(vo " ,dp »Vg0) (UE)m)_Ug,O) (Ué)m))_vg,o 0
m=1,2, (28)
and the equation for the sharp distributiarf§(¢) is
dZim c dog"
— Q| = = 51 =0,
d¢ [vo " +vp (0)_09,0] d¢
m=1,2. (29

The appropriate boundary conditions are

TR x)=TR(L—x0), YN | = dTRIAX ]y,

(30)
057(0)+257(0)=v(0) +35(0),
dog/d¢lo=dvg?/dZ]o, (31)
vp(=2)=0, v{(+2)=0, (32)
and the integral condition is

0 dx’ L—Xg dx’ pnL

f =D e 3 +f o a1

—xo [Vg (X)) =gl 0 [vy (X")—vgol do
(33

The manner in which Eqg27)—(29) and conditiong(30)—
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C. Shape of wide traffic jams
1. Sharp distributions

Equation(29) for sharp distributions is a convenient start-
ing point for determining the shape of a wide traffic jam
[Fig. 1(@)]. Integrating Eq.(29) with respect to{ yields an
equation of the form

" —m) 4 7>(m) _
dz Jo {—rmvo )+;Bm)(0)_vgo+vo +v4y(0) Ug,0

+BM™=0, m=1,2, (35)
whereB™ and B(® are constants, and where the constant
—g§[vi™(0)—vg0] is added to the left-hand side of Eq.
(35) in order to simplify the subsequent analysis. It follows
from Egs.(35) and (31) that constant®® andB® in Eq.
(35) are equal to each other, i.e., ttV=B®=B. It is
thus possible to introduce the variable

ve(O)+05P(0)—vgo, (<O

V=R +5R () -vgo, >0, O
and to rewrite Eq(35) in the form
W

ar ~ . (37

In Eq. (37), the functionf(v*) is

f(v*)=p(v*)—B, where o(v*)=0q5(* +c3/v*).
(39

The boundary condition&32), written in terms of the vari-
ablev* read

0¥ (=) =0G"(0) ~vgo, V¥ (+2) =057 (0)~vgp,
(39

i.e., the solutionv® (¢) tends to constant values with increas-
ing |¢. Equation(37) has solutions which correspond to the
boundary condition§39) only if the functionf (v*) becomes
zero atv* =v*(—=) andv* =v*(+«) [Eq. (39)], i.e., if

(33) are derived is shown in the Appendix. The solution ofthere are real solutions,f =v*(—), andv} =v*(+=),
Egs. (27) and (29), obtained under the boundary conditions Of the equation

(30—(32) and the integral conditio(B3), determines, in the
zeroth approximation inuy<<1, the shape of a stationary
moving jam, its velocity 4, and the value™:

v(X)=00"(x")+0i"({)+O(po), mM=1,2,

(34

Vg=Ugot O(mo): O* :qa +O(uo)-

The results of numerical investigatiof§] indicate that,
depending on the densipy, , two types of stationary moving
jams can be expected) wide jams[Fig. 1(a)] and(ii) nar-
row jams[Fig. 1(b)]. In contrast to a narrow jam, the dis-

f(v*)=0. (40)
The latter is only possible if the constatin Eq. (38) ex-
ceeds the minimum value of the functigifv*) in Eq. (38).
In this case Eq(40) has two real root;* =v andv; [Fig.
2(a)], which are equal to the values (—«) andv™* (+«)
in Eq. (39), respectively:
v =05"(0)—vgo and v3=vF(0)—vgo. (41)
It follows from Egs.(38) and (40) that the constanB in
Eq. (38) can be expressed in terms of the roeofsandv; as

tancel ¢ between the fronts of a wide jam, where the densityfollows:
and the average speed of vehicles vary sharply, is believed to

exceed considerably the widths of the both frdifiig. 1(a)].

B=qj (v} +cj/vT)=aj (v3 +ci/v3). (42)
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FIG. 2. The qualitative shapes of the functiffp*) involved in
Eq.(37) (a), of the functionF (v{™ ,q% ,vg0), m=1,2 and involved
in Eq. (27) (b) and the illustrating of a graphical solution of E¢47)
(). In (c), curveH is the fundamental diagra®(p), and line 1
corresponds to the functiod8) at g3 ,v 4= const andv 4 (<O0.

The second equality in Eq42) indicates that the values

v} ,v5 satisfy the condition

vT %

U2

Taking into account Eq41), this condition can be written as

follows:

Py

_ A2

p P

(TF(0)—vg ) (TR(0)—vg0) =Ch.

The function f(v*)<0 at anyv* in the intervalv}
>v*>p3 [Fig. 2a)]. Therefore, it can be found based on

boundary conditiong39). The sharp distributions§"(¢)
and v?(¢) [Fig. 3@], namely, the function§(¢)+
7E0(0) andv?(2) +92(0), describe the distribution of the
average speed of vehicles in the Iéfipstream front of a
wide jam[Fig. 1(@]. In the latter formulas and in E¢44),
the valueso§”(0) and7{?(0) must be determined by an
analysis of Eq(27) for a smooth distribution describing the
right (downstreamfront of the jam.

2. Smooth distributions

As already mentioned in Sect. Il C 1, sharp distributions
cannot describe the riglitiownstreamfront of a wide jam,
where the average speed of vehicles increfiSigs 1(a)]. We
will demonstrate that this front corresponds to a smooth dis-
tribution located in the intervain=2 (0<x’'<L-—Xg). To
do this, we will consider the shape of the function
FO a8 ,vg0 [Fig. 2b)] given by Eq.(28) for certain
constant values|; andvgo. Let us examine first the prop-
erties of the root${?)=wv; of the equation

F(0i? 0% vg0=0 atg§=const, vgye=const.
(45)

Using formula(13), namely,

do
P= =)

=z (46)
Up —VUgo

it is possible to write Eq(45) in the form of equation

pV(p)—pvgo—0ds=0 where gf=const, vg4o=const.

(47)

The rootsp = p; of Eq. (47) can be determined as intersection
points at which the fundamental diagra@(p)=pV(p)
[curveH in Fig. 2(c)] is intersected by a line

9(p,dg vg0)=0o +pvgo (48)

Eq. (37) that the derivativelo® /dZ<0. This means that only [Straight line 1 in Fig. &)]. It can be seen that there are
a solution describing a decrease in the average speed of v@lways functionsQ(p) and ranges of the valueg; = const
hicles is the possible solution for the entire class of the shargnd of negative velocitiesg ;<0 such that the straight line

distributions. In other words, only the léfipstreamfront of

9(p,qp vg0) intersects the fundamental diagre@(p) at

a wide jam, where the average speed of vehicles is a decred§ree pointsp;, i=1,2,3[Fig. 2c)] and hence E¢(47) has
ing function of the coordinatéFig. 1(a)], can be described three rootsp=p;, i=1,2,3. As it follows from Eqgs(45),
by such sharp distributions. Figur¢aB shows the shapes of (46), and(28), the relation between the roots=p; (where

the corresponding sharp distribution§"(¢) and v{?(¢),
given asv§" () =v*({)—v§™(0)+vg0, M=1,2[see Eq.
(36)], wherev*(¢) is the solution of Eq.(37) under the

)

(®)

/Vo

W) @ ; Yo(x')
e Vs
Vo
: V2
<)\ O
" g y
! o

FIG. 3. The qualitative shape of shaf@ and smoothb) dis-
tributions of the average vehicle speed in a wide stationary movin

jam.

0

i=1,2,3 of Eq. (47) and three corresponding roots of Eq.
(45) TP =0, (wherei=1,2,3), is expressed by the formulas

vi=V(p), 1=1,2,3. (49)

wherev ;<v,<v3. When determining the shape of the func-
tion F(v$?,a% ,vg0), EQ.(28), note that the value of func-
tion F(§,q5 .vg0) is equal to the differenceQ(p)
—9(p,a% g0, wherep=a3/ (05— vy ). Within the den-
sity rangep,<p<p;, whenv,>v>v,, the inequality
Q(p)<9(p.ap vg,0) holds truefFig. 2(c)], therefore giving
d:('ﬁéz),qz,‘ 0q.0)<0. Within the density ranges;<p<p,,
when v3>0§7>0v,, the inequality Q(p)>¥(p,q§ ,vg0)
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holds true[Fig. 2(c)], therefore givingF('17§)2),q(’)c Ug0)>0. density of the vehicles are equal to the valugsvz and
Hence, the functio (v§? g% ,v40) has the shape shown in p1,ps inside (1,p1) and outside {3,p3) the jam, respec-
Fig. 2(b). tively.

It follows from Eq. (49) that the pointsy;, i=1,2,3 are  Letus now consider the functian(x) =v§"(x’) +v§"(¢)
located on the fundamental diagram, i.e., they may correwhich describes a wide jam atk<X, [Fig. 1(a)] and de-
spond to homogeneous states of traffic flow. It was statetermine the shape of a smooth distributﬁ@r)(x’). Based
earlier that a homogeneous state of a traffic flow is unstablen boundary condition&30) it can be seen that the boundary
with respect to long-wave, small-amplitude perturbationsvalue 7§(—x,) of function 7{(x’) is equal toT{P(L
within the interval of the densityc;<p<pc,, i.e., Within - —x ) and henc&{Y(—xo)=v4 [see Eq.(50)]. It follows
the interval of the average speed of vehidgs>v>v,, from Eq. (27) that Eq.(27) has no solutions§(x') which
wherev ;i =V(pgi), 1=1,2[see Eqs(6) and(?)];NumericaI satisfy the boundary conditio?v'lgl)(—xo)zvg, with the ex-
investigations[6] have proven that the pointsg2)=vl,v3 ception of the homogeneous solutiaif(x')=vs [Fig.
satisfy the conditions<v., andvs>v.q, i.e., they corre- (b)]. To prove this, let us take into account that is the
spond to a stable state of a homogeneous traffic flow, anraoOt .of Eq. (45) anéj the functiorF('J(l) a2 wao) in Eq
that the pointo{?=v, corresponds to an unstable state:(27) is ther.efore, vero at a value 661)200; OL,eths assurﬁe

Ve1>>Uo>vep. Therefore, any solution is unstable if it in- (1) i
cludes an extended essentially homogeneous part for whici{St that a solutioryg™'(x") corresponds to’il?ecrease in the
average speed of vehiclesxdt>—x,, i.e.,vy (x’)|x,>_x0

¥ ~v,. For this reason such unstable solutions will not be
taken into consideration. <v3. In this case the conditioﬁ(i?gl) o} 0g,0>0 is met
The downstream front of a wide jam is a transition layer[Fig. 2(b)]. On the other hand, sineg,>v, [Fig. 2(b)], one
between a homogeneous traffic flow with a lower averagean see based or52) that the coefficient[cg('z?gl)—
speed of vehicles and another state of homogeneous flongo)‘z—l] in Eq. (27) is negative for the valueggl) near
with a higher average speed of vehic[gsg. 3b)]. There- . "t thus follows from Eq.(27) that dv§V/dx’>0. The
fore, this front can only correspond to the solutii’(x')  Jatter result contradicts the initial assumptigi?(x')<v; at
of Eq. (27) that starts at the poiff’’=v; and ends at the y’> —x,. A similar contradiction arises with a solution cor-
point ) =v3 [Fig. 3(b), 0<x’<L—xo]. This means that  responding to an increase in the average speed’zat
—Xo. Therefore, one can conclude i@t (x')=v and that

~(2) _ ~(2 _ _ . . I .
057 (0)=v1, V5 (L—Xo)=va. (50 the shape of a wide jam atOx=<x, is indeed described by
th luti
The solution under consideration exists only if the derivative © soiution
do{?/dx’#0 at the intermediate poinb?’=v,, where 0(x) =TP XN+ =TR(L—xo)+0(). (54)
F(v,,q5 ,0g,0 =0. As follows from Eq.(27), the fulfillment
of both conditions This analysis demonstrates that
dog/dx’ [52-,,#0, F@OE .05 ,vg0)l52-,,=0 v67(0) =06 (L=x0)=vs and T?(0)=v;.
(52) As a result, formuld44) can be written as
can be satisfied at the same pavr{ﬁ v, only when [V(pg)—vg,o][V(pl)—vg,o]=C§, (55)
2 _ -2_ —
[Co(va=vg0) 1]=0. (52 where expression@9) have been taken into account.

Equation(52) yields the following formula for the velocity Three equations

of a wide jam: piV(pi) = pivgo—0d5=0, =123, (56)

Vgo=U2~Co .., vg0=V(p2)=Co, (53)  which follow from Eq.(47) at p=p, (i=1,2,3), and which
are used together with Eg&3) and(55) can be used to find
five valuespy, pz, p3, vgo0, andqg which determine, to an
accuracy ofug<<1, the parameters of a wide jam. The solu-
tions of these simple equations will be given in Sec. Il

where the expression,=V(p,), Eq. (49), has been taken
into account. Based on E€R7), it can be seen that the de-
rivative d'JE)Z)/dx’ is positive across the entire intervak
>vP>v,, since FEOP,q5,050>0 and [c3@
—vg0) >~ 1]<0 atvs>v’>v, and F(UE,q5 vg0) <0 lil. PARAMETERS OF JAMS
and[c3(vP—vg0) 2—1]>0 atv,>vP>v,. Hence the
solution 'ng)(x’) actually corresponds to the downstream
front of a jam, that is, to the area where the vehicle speed The following designations, some of which are illustrated
increases with increasingy . in Fig. 1(a), will be used for the main parameters of a wide
Finally, it can be seen that the solutiorfx)=2{2)(x’)  jam, that is, for(i) the densities, average vehicle speeds, and
+vi2(¢) describes the shape of a wide jamxatsx<L fluxes inside and outside of the jatii) the velocity of the
[Fig. 1(a)]. It means that in areas sufficiently removed fromjam, and(iii) the parameteq*, respectivelyEq. (12)]: (&)
the both fronts of the wide jam, where the traffic flow is in Pmax» Pmin+ ¥ min+ ¥max» Amin» @Nd0max=dout; (b) vg'; and(c)
one of the homogeneous states, the average speed and tife. These parameters can be determined, to an accuracy of

A. Characteristic parameters of traffic flow
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ro<<1, by solving Egs(53), (55), and(56) for p1, ps, p3, Prax
im m m
vg0, and Qo to obtainpra=p1, Pmin=Ps: Vmin=v1=V(p1), (2)
m m . m m m m m .
U max=03= V(P3), Amin=Pmamin: Amax=PminVmaxs Ug~=Ug,0: Ve = dout pl

and gz =qg . Therefore, conditiong53), (55), and (56)

make it possible to write simple formulas that determine the %
desired relationships between all these parameters. In par-
ticular, the equations

V(pmin) =V(y pminpmax) +Co(1- \/pma)jpmin) =0, (57)

V(pimax) — V(N prminPma) T Co(1 =V pmin/ Pmaxd =0 (58) P "
can be used to determine the outside and inside dengflies © -

m . . . . . Vg <\ = qou o
and pn., Of @ wide jam. Meanwhile, the velocity of a wide P rain

jam vg‘, the valueg* =g and the average speed of vehicles
inside v, and outsidev . the wide jam, and the flux of
vehicles escaping the jamy,,; are given by

>
X

FIG. 4. A qualitative explanation of the characteristic param-
eters of a traffic flow: Distributions of the density in a wide jam

U(?:V( vpﬁmpmax) ~— Co, (59 stationary moving along a circular roéa), in a localized cluster of
vehicles in an open systeth), and during queue dischar@e. The
a% = coVPmamin (60)  value p=pp,, is the density inside the jam®) and (b) and in a
qgueue(c). In these three cases the same self-organization process of
vmin=V(pm), vm s =V(pmn)s  dou= Umax= Pminl max- queue discharge occurs and the same stationary front which moves

at a velocityvgm (vg‘<0) is formed. In case&)—(c), downstream

from this front a nearly homogeneous state of a traffic flow is also
It is also useful to write the formulas expressing the relatiorself-formed, in which the flux is equal =g, and the density is
between the density)'=p, in Egs. (56) and (53) and the equal top=pmin-

arameter i, ,omax: _ _
P Pmin Pmax It should be noted that a different unit of length,

V(p3)=V(pm)+Cco(1—p3/pm.), (62) = \/,u_f)‘Ir,_ was useq in R_e1L6], and that in the case under
consideration the ratity /I is 15/1=2.4845.
pl= [m m_ YL (63) The existence of characteristic parameters of a traffic flow

is linked to the following process of self-organization taking
It should be noted that formula&7)—(63) are correct to Place in the downstream front of a wide jam: Drivers escape
wo<l. from a standstill inside the jam at an average rate that is
It can be seen in Eq§57)—(61) that if the functionv(p)  independent of the initial conditions in the traffic flow, such
and the valuec, are given, then the wide-jam parameters@S the d_enS|ty of thg |p|t|al flow existing prior to jam forma-
Pl M o™ o™ Gou 0™, andg? may be determined tion. This self-orgamzmg process depends solely_on the traf-
uniquely These parameters are independent of the vehiclfC parimeterfsf,_, v¥|h|ch4:7ire function of the controlling param-
densityp,,, other initial conditions, or road length. These eters of a traffic flow47]. . .
parameters are therefore tblearacteristic(i.e., intrinsig pa- . It should be noted Fhat the self-orgamz_mg process _|nv<_JIv-
rameters of a traffic flow, as is also confirmed by a humeric ng the escape of vehicles from a standstil |nS|d§ a wide jam
investigation[6]. These characteristic parameters are merel Fig. 4@] is, in essence, a process of queue discharge. In-

the functions of the traffic parameters determining the func-deed' a jam of sufficient width can be viewed as a regular

tion V(p) and valuec, in Eq. (2). long queue of vehicles. On the other hand, parameters of the

The characteristic parameters determined by formula%raﬁ'c flow upstream from the jam can merely change the

(57)—(61) of the present theory appear to be in good agree_ength of the queuéhe length of the jam but they have no

ment with the results of the numerical investigations ofjamseffeCt on the escape of vehicles from the jam, i.e., from the

6] The parameters of raffc floualuesb, vy, andp: in — F2 2 ey 8 S S8 T e wide jam.
qu(i)égfﬁgf) iréfqihgg]egsrendalipe Riff[g]szig?ec?;tzi::,g in in thg case of a local cluster of vehiclgSig. 4(b)], and inl

N% 68 N M —014% m —o % —175./ max many other cases involving a possible formation of a long
- P, Pmin” - b, vmin=0, Umax="- 19077 Gou gueue of vehicles. In an example of traffic interrupted by
=0.246plo/7, vg=—0.454,/7, andqs =0.31Qlo/7. The  yratiic lights, a queue discharge occurring when a sufficiently
parameteluo, Eq.(11), of the asymptotic theory is equal in |ong “red” light has changed to the “green” light, is iden-
one can see that these values of the characteristic paramet@isy, 3 wide jam[Figs. 4a) and 4b)]. In other words, all

of traffic flow are very close t0pp,=0.709, pmin  these different qualitative casdbig. 4) involve identical
=0.14%, v,=0, Uma=1.730/7, Gou=0.25(lo/7, vg'=" queue discharges in the sense that they are the same self-
—0.439,/7, andqgs =0.31%l, /7, respectively, which have organizing processes leading to same stationary moving
been found in the numerical investigation of jams in R8f.  fronts between the queue and the traffic flow downstream



56 ASYMPTOTIC THEORY OF TRAFFIC JAMS 4207
from the queue. As a result of this self-organizing process, vl
the same homogeneous state of traffic flow downstream from
the queue is produced, with the flux, density, and average
speed of vehicles having the same characteristic parameters
Qouts Pmin» andov ., [Fig. 1(@)] as those discussed above.

The width of a wide janL [Fig. 1(@)] is determined by
Eq. (33), where the valugg =q} from formula(60) should
be used. Thereford,; depends on the densipy, and road
lengthL. For a given valud., a lower densityp,, yields a
lower value ofLg. This means that at some denspy a
wide jam can transform into a narrow jam composed of only
two fronts[Fig. 1(b)].

Po Pu Pel P2 P

B. Narrow jams FIG. 5. A qualitative explanation of the solution of Eq2): A
e{ragment of the functiotV(p) (curveH); straight lines 1, 2, and 3
Igorrespond to the functiow(p,py) related to different densities
h:Pb<Ph<pmin (ine 1), pn=py, (line 2), andpp=pc; (line 3).

The fronts of a narrow jam can be investigated using
procedure identical to the one used above for wide jams. |
this procedure, the characteristic length of change of the af

erage vehicle speed and density is equaltp,, or tol,, r . )
determined by the sharp distribution in the case of the upparrow jam parameters on the dengiycan be found ana

stream front, and by the smooth distribution in the case O}ytically. To do this, let us write the formulas related to the

. * -
the downstream front, respectively. In contrast to the param_parametem)m,n, Pmax, Ug, ANAQ™ in terms ofp,. Accord

eters of a wide jam, the parameters of a narrow {aarrow Ing to Eqs.(53) and (64)—~(66), the result if48]
cluste)y are functions of densityy, . =02/ v V(o) (1= 0] o

It can be seen that formulk®3) can also be used to de- Pmax= P2 Pmin: V(p2) =V(pmin) +Co(1= P2/ Pmin) ’(67)
termine the parameters of a wide jam, but the following for-
mulas should be used for narrow jams instead of formulas va=V(p2)—Co, q*=Cops. (69)
(56), (49), and(55), which are valid for wide jams: g

. ) Meanwhile, the integral conditio(83) can be written as
piV(pi) —pivgo—do =0, =23,

L—Xg - , ,
pmax,dvmin,o_vg,o)_q?)r =0, (64) Pmink+ fO [PE)Z)(X )_Pmin]dx =ppl, (69
vi=V(p), 1=23, 65 wherep@(x')=a}/[7P(X') —vg,] describes, in terms of
) the zeroth order of.y<<1, the density distribution existing in
(Vmino—vg,0[V(p3) —vg0l=Chs (66)  the downstream front region. Equati¢69) can be deduced

_ _ _ o from Eq. (33) if formulas 7§ (x") =v3=V(p3), and ppin=
Wherepmay,oiS the maximum density antly, othe minimum -, anq Eq.(64) are taken into account @t 3. In view of
average speed of vehicles in the center of a narrow jamgq (g9), it can be seen that the number of vehicles trapped
which are determined to an accuracyf< 1.1t should be  \ithin a narrow jam at.> |, (more particularly, at — =) is
”Ptedjg?t formulg66) fo[()(\i\;s from Eq.(44) if the expres-  pegligible in comparison with the total number of vehicles
sionsvy(0)=vmino andvs’(0)=V(p3z), which are valid  on the roadN=pyL, i.e., pmin—pn at L—o. The function
for narrow jams, are used in the latter formula. The narrow-'f;g)Z)(Xr) does indeed reacp,, outside a narrow jam of

jam parameters such as the maximum and minimum densfyiqih |, making it possible to ignore the second term on the
ties pmax and pmin, the maximum and minimum vehicle |ofi_-hand side of Eq(69) at L— to give pn=pn. AS a

Speeds maxandv min [Fig. 1(b)], the jam velocity g, and the  raqit the following approximate equations can be obtained
parameteq®, calculated to an accuracy pf,<1, are given  om Eq. (67):

aS Pmax=Pmax,0r Pmin—P3> vmaxzvszv(ps)v Umin=Umin,0»

vg=Ug0. and gq*=qg, and are thus related to EQgs. Prmax= Pg/Ph, (70)
(53) and(64)—(66). The external and internal fluxes of a jam
apparently - are dou= Umax=UmaxPmin - N min=VminPmax- V(p2)=V(pn) tCo(1—p2/ppn). (7D

However, contrary to the case of a wide jam, the densjty
and average speeg,, in the center of a narrow jam do not
obey formula(49) ati= 1. Instead of this formula, the inte-
gral condition(33) as well as expressior{s3) and(64)—(66) An analysis of Eqs(70) and(71), shown in Fig. 5, dem-
should be used to find the parameters of a narrow jam. Faonstrates that there is a boundaiyreshold density py,
this reason, the parameters of a narrow jam depend on thep, which corresponds to a minimum amplitugg,.,
densityp;,, and road lengti. =Pmaxp LFig. 6@] and a maximum velocity y=v, , of a

Of the utmost interest, however, is the case in which thestable narrow janiFig. 6(b)]. This conclusion conforms to
road lengthL is much larger than the width of a narrow jam, the results of the numerical investigatip@y]. Indeed, let us
that is, whenL>1,. In this case the dependence of thefirst consider solutions of the equation

C. Boundary (threshold) density and flux of jam’s existence
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P (2) Vg (b) boundary flux isq,=ppV(pp). It should be noted that the
m‘ Vq o density ispmin=pn atL— . Let the valuep,;, related to the
P max // boundary density,=p, be designated &syin=pminp- This
Pmas,b - (( pb/// value is equal tgy,: pminp=pp, i-€., it is in agreement with
\ \\\\\\\\\\ vy b° & Pt Pa the results of the numerical calculatior&,
P P Pro gy Ob= out (74
¢ (© yvhere Jout= pm_mV(pmm) is the flux in the ou_tflow fro_m the
jam. The physical explanation of formu(@4) is very simple
q [6]: if a flux into a jamqy, exceedsy,,;, the width of the jam
(v, L, increases. Otherwise, i§,<Q.y, then Lg decreases
M monotonically, and the jam gradually disappears. Therefore,
e if gn<<Qou» then a jam can be neither created nor sustained
Po Pel Pn for a long time, i.e., the boundary fluy, at which the jam

can still be sustained is indeeg;.

As follows from Eqs.(68) and(70), at the boundary den-
sity ph=p, the amplitude of the stationary jamay
=Pmaxp- Its velocity vg=vy,, and the valueg* =qp are

ggiven by

FIG. 6. A qualitative explanation of evolving of a jam for the
case in which the density;, is changed: A qualitative shape of
dependencies of the jam amplitugg,y (), of the jam velocityv
(b), and of the parameteq* (c) on the densityp,. In (c),
q*|ph:p01=copc1. Dotted lines correspond to unstable states. Th
arrows symbolically show a transformation of a narrow stable jam

—.by2 — b * _ b
into a wide jam. pmax,b_(pz) /pb1 Ug,b_v(pZ)_COI qb _COPZ .

(79

V(p)=i(p,pn) Where ¥ (p,pn)=V(pp)+Cco(l—plpp), The densityp i, outside a narrow jam is slightly lower than
(720 the densitypln.. outside a wide jam, i.ep,<pm.. . There-
o fore, the flux out from narrow jamg,, is also slightly lower
and where the densityy, is a parameter. The roots of EQ. {han the corresponding flug,,, out from a wide jam. As
(72), which are obviously the possible values of the densityy) o\ from numerical calculations, these fluxes differ only
p2 in Eq. (71), can be found as the points at which function gjighty. For this reason, formulér4) is roughly valid even if

V(p). (cur've H in Fig. 5 _intersects with a liney(p,pp) the valueqy,,; for the flux out from a wide jam, Eq61), is
(straight lines 1, 2, and 3 in Fig)5 used in this formuld49].
Equation (72) has two solutions in the density interval

(line 1, pointsa andc, in Fig. 5. Therefore, as follows from
Egs.(70) and(71), there are two different solutions for the
densityp, corresponding to two narrow jams with different ~ The analysis in Sec. Ill C was made for the density range
amplitudes. These two solutions have different parametergp,<pn<pmin,» Where there are two solutions related to nar-
and exist at the same density (Fig. 6). The greater solution row jams: a stable one at a higher amplitude and an unstable
p, (point c) corresponds to a narrow jam with a higher am-one at a lower amplitudgFig. 6@)]. As the densitypy, in-
plitude, whereas the lesser solutipp (point a) corresponds  creases, the amplitude of the stable jam of higher amplitude
to a narrow jam with a lower amplitude. Numerical calcula-increases, and the amplitude of the unstable traffic jam of
tions have shown that the narrow jam of higher amplitude idower amplitude decreas¢big. 6(@)]. When py, approaches
stable and that the narrow jam of lower amplitude is unstabl¢he characteristic densityy;,, which is realized outside a
(Fig. 6). wide jam [Fig. 1(a)], the narrow jam of higher amplitude
As the densityp,, decreases, the larger solutipp of Eq.  gradually transforms into a wide jam with the amplityg,,
(72) decreases and the lower solutipnincreases; therefore, (this transformation is shown schematically with arrows in
according to Eq(70), the amplitude of the stable jam of Fig. 6). A further increase irp,, merely increases the width
higher amplitude decreases, and the amplitude of the urof the jamL, but has no effect on the other parameters of
stable jam of lower amplitude increases. The two solutionghe jam, which remain equal to the characteristic parameters
of Eq. (72) converge at a density,=p,. The related solu- determined by Eq957)—(61).
tion p, designated in Fig. 5 a;sz:pg. The corresponding A narrow unstable jam of lower amplitude evolves differ-
line 2 given byy(p,pn), EQ.(72), is tangent to the function ently when the density,, is increased. As follows from an
V(p). Therefore, densitp,= p, and densityp,=p5 can be  analysis of the roots of Eq(72) (Fig. 5), the higher the

D. Evolution of narrow jams with increase in density

determined using the equations densitypy,, the lower the valug,, which corresponds to a
narrow jam of lower amplitudépointa in Fig. 5). Therefore,
V(pg) =V(pb)+co(1—p2/pb), dV/dp|pl2>= —Colpp- as follows from formula70) that the amplitude of a narrow

(73 unstable jamp,ax gradually decreases with increasing den-
sity py, [dotted line in Fig. €)]. If the densitypy, is increased
The densityp,= py, given by Eq.(73) determines the bound- further, the valug, merges with the root of Eq72) under
ary (threshold density of traffic jam existence, because Eqgs.consideration when the ling(p,py), Eq.(72), becomes tan-
(70) and(71) have no solutions gi,,<p,, and no solutions gent to the curveV(p) (line 3 in Fig. 9. In the point of
therefore exist in the form of traffic jams. The correspondingcontactp = p, the slope dV/dp|ph) of the curveV(p) equals
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the slope cq/py) of the line ¥ (p,pyn), EQ. (72); i.e., the  however, we will briefly consider in Sec. IV A the properties
condition of jams in an actual traffic flow, and compare these experi-

mental properties of jamlgl] with theoretical predictions.
dV/dp|ph=—CO/ph (76)

) ) ) o A. Comparison of theoretical and experimental results
is fulfilled. A comparison between Eq§76) and (7) indi-

cates that this condition determines the critical dengity ~_ Based on the experimental observations of a large number

— pey Of stability of a homogeneous traffic flow with respect ©f Wide jams on numerous German highways, Kemer and

to global perturbations of small amplitude whén—c. Rehborn found that an actual wide jam has the followihg
characteristics.

Therefore, atp,— p.; the amplitud — pn=papn—pp, Of facte . . .
an unstable tﬁ;rrolxljam tendps o ;gl%zx g(r;)fz P Ph (i) A jam can move along a highway for a long time while

It should be noted that Kurtze and Hofg] found that at preﬁerving its shapg and main parameters. -
a densityp,, near the critical poinip, = pe, the form of a (u_) A stable Ioc_:allzed co_mplex structure consisting of sev-
low-amplitude unstable traffic jam can be described with theeral__!amv?/hcan tth|st“on ? hlllghv’v,ay. ; ¢ traff
aid of the perturbed Korteweg—de Vries equation deduced in. (iii) d e? ,(,a f cont rof Ing dpiaratrrr:e ersftﬂo rfa Ic t?]re
Ref.[29] from the mode[Egs.(1)—(3)]. It can be shown that given and “iree flow 1S formed in the outilow from the

for a low-amplitude jam the approach based on the singulallam’ the averaged fluxes out from various wide jams are

perturbation theory holds, and that formulg®) and (72 roughl;ijeq'ual to each othefr. l'lrh(;,\hdownstreatmt.fronts of var-

remain valid if the densityp,, satisfies the conditionp(, ous wide jams are essentially the same stationary moving

N 1 h 1) ie. if pr<pr— structure. Therefore, the mean characterigvesocity, etc)
Pn)Pe1 = Mo (Whereug<1), i.e., if pp<pc1—popc1-

The manner in which the iam’s velocity. and the pa- of these jam’s fronts are virtually constant over time.
* J : Y P (iv) An essentially stationary moving traffic jam can exist
rameterq* depend upon the densipy, can be determined on a highway
based on the conS|deraF|on presented aljévgs. Gb) and (v) The flux of a “free” traffic flow can be considerably
6(c)]. These dependencies follow from Ed68) and from higher than the flux out from a wide jam
the formulav 4= V(pp) — ¢, (€.9., Ref[7]) for the phase ve- :

locity of I litud Curbati the h As follows from the results of the numerical calculation
ocity of small-amplitude perturbations near_the OmOge'performed in Ref[6] and from the results of the analytical
neous state of a traffic flow at densjty=p.1, EQ. (7).

theory presented in the paper the macroscopic mdees.
(1)—(3)] is capable of explaining all the experimental prop-
IV. DISCUSSION AND CONCLUSIONS erties of traffic jams(i)—(v) mentioned above. The theory

Th totic th f traffic | ted h and the experiments have been compared in further detail by
€ asymptotic theory ot traflic jams presente erenumerically simulating the case presented in the arfidle

makes it possible to find simple analytical expressions for th%ased on the traffic flow model Eq&l)—(3) and Eq.(5)
main parameters of large-amplitude jams usually observed ify;,¢ 7 and 8[50]. The initial flux distribution and initial
expenm_ental observations. An_analy3|s of these analytlg verage vehicle speed distribution were based on the experi-
expressions shows that, according to the results of numeric ental data obtained at 14:Gfhese initial distributions ig-

[6] and experimental4] investigations, a traffic flow has ored fluctuations and other small changes in the variables

characteristic parameters that are independent of the initigf; o ; .
conditions of the traffic flow. Good agreement exists bef11 Ig. 7@][51]. At this time, both jams were already within

" 4 he high [ i i Figs. 2 [
tween the characteristic parameters derived from the analytk :f [lg])wlazl?/gatraggo_(nb)u r;(:]zr ﬁg)nzﬁsvrva;ﬁ;: ?n alr?r? er iin\?\/ri Cm

cal expressions of the present theory and the characterist{ﬁe jams developed between 14:09 and 14:24, when both
parameters obtained in the numerical investigafiinThese jams were still within the highway section under consider-

two approqches, that_is, the num_erical inyestiga{iﬁ)]wand ation[4]. Just as in the experime(figs. 2 and 3 in Ref4]),

the analysis of analytical expressions, point to the ems_tencgoth the structures and the characteristics of the two jams
of a boundary(threshold den§|typb and_a corresponding (including the velocities of the downstream fronts of jams
bound_ary(thrt_eshold flux g, of jam formation. If_the flux of and the flux out from the jamsemain unchanged during the

a traffic flow is lower thar,, a jam can be neither formed propagation of the jams along the highwiigs. 7b) and

nor sustained for a long time in this traffic flow. 7(01. Th imental f a iam(Fia. 4 in Ref
It should be noted that the fronts of a traffic jdfig. 1) %w]. e experimental property) of a jam (Fig. 4 in Ref.

. i . . 4]) is also realized by the model Eq4)—(3) under consid-
in which both the density and the average vehicle speed Utk ation The latter can be seen in Fig. 8, where, as follows
dergo noticeable spatial variations may be viewed as sho

£ a traffic fl Shock | | > from numerical calculations, the maximum possible flux in a
waves of a traffic Tlow. Shock waves also commonly OCCUr Ny aiaqtaple state of a homogeneous traffic fip(see Ref.

Y8)) is noticeably higher than the flux out from a wide jam

namics in particulaf37]. On the other hand, in 1955 Light- Gout
out-

hill and Whitham put forth a theory of shodkinematig
waves in traffic flowd38]. It may be reasonable to compare 5. Traffic d ki .
the traffic-jam properties obtained based on the numerical - [Tatic jams anc Inematic waves
investigation[6] and the theory presented in this paper, on in Lighthill-Whitham theory

the one hand, and the results obtained based on the well- An assumption that flux is solely a function of density
known Lighthill-Whitham-theory of traffic flow(Sec. IV B) makes it possible to arrive at the theory of kinematic waves
and the shock waves investigated in gas dynant®sc. developed by Lighthill and WhithanLW theory) in 1955

IV C), on the other hand. Before making this comparison[38] rather than at the model Egd)—(3), in which the de-



4210 B. S. KERNER, S. L. KLENOV, AND P. KONHAJSER
t, =14:09 1, =1414
q(vehicles/h) q(vehicles/h)
1500 1500
1000 1000
500 500
00 10 x{km) 0 10 x(km)
v(km/h) v(km/h)
80 80
60 60
@ 40 ® 40
20 20
i 10 x(km %% 10 x(km)
p(vehxclcs/km p(vehlcles/km
150 150
100 100
50 50
% 5 10 x(km) 3 5 10 x(km)
1, =1424
q(vehicles/h)
1500 at x =4.4 km
1000 q(vehicles/h)
500 1500
ol TR 1000 ﬂ f
500
v(km/h) o
80 14:09 14:20 14:30 14:40
60
() 20 v(km/h)
20 ) 0 ﬂ f
oL 30
10 x(km)
p(ve‘“des/km k09 7220 12:30 14:40
150 p(vehicles/km)
100 100
50 50
0 ? ) - - -
0 5 10 x(km) 409 14:20 14:30 14:40 ¢

FIG. 7. A comparison of a propagation of jams based on the madeig3) and the experiments made in Ré&]: The initial
distributions of the fluxg, the average speed of vehickesand the density (a) and the distributions of these variables during a propagation
of the jams along a roath) and (c). (d) shows the corresponding dependendjés, v(t), andp(t) atx=4.4 km. The parameters of the
model arec0=39 059 km/h, p=175 vehicles/km. The functioW(p) is given by Eq.(5) at v;=91.649 km/h,p;;=0.2p, b=0.0%p, d
=1.1254<1077, and uo=
second jam, arg,==120 vehicles/kmg,,~ 1500 vehlcles/hpg =—14.6 km/h, pp=p;,=19 vehicles/km;p 1;,=0, andv =79 km/h.

pendence of flux orboth the densityand on the average c(p) [10,38. When the density is within a range in which
vehicles speed is of crucial importance. Because in the L\WQ(p) is convex, regions of lower densities propagate faster
theory the flux is related to the density in accordance withthan regions of higher densities. Therefore, negative gradi-
the algebraic relation ents decrease, while positive gradients increase. Ultimately,
discontinuities(shock$ appear. If a shock has formed, it

a=Q(p) where Q(p)=pV(p), (77 moves at the velocity10,39
the equation of motion of vehicles is no longer necessary for Q(p™)—Q(p)
the LW model. Hence this model reads S (79

ap ap ~dQ
E+c(p)&—0 where C(p)—d—

wherep® andp ™~ are the densities immediately in front and
behind the shock, respectively. The amplitude of the shock
fades over time, howev¢i0]. A homogeneous state of traf-
fic flow is finally established. These conclusions are based on
investigations of shocks performed by

(78)

and the functionQ(p) is given by Eq.(77). Solutions pro-
vided by the LW model can be waves with group velocity the analytical

0.48. The characteristic parameters of traffic flow found, i.e., the parameters of the downstream front of the
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q (vehicles/h) ~ ~ It is worth mentioning that expressia80) formally cor-
responds to the shock velocify9) in the LW theory of
kinematic waves. In the LW theory for a traffic flow, how-
ever, the densitiep™ andp~ in Eq. (79 can be arbitrary
points on the fundamental diagra@(p) [38]. In contrast,
the equation of motioKi2), which is given by the model Egs.
(1)—(3) but is absent in the LW theory, playsdacisive role

in jam formation. Indeed, this equation provides local feed-
back for a traffic flow[6,7], resulting in the self-formation of
traffic jams. This equation also determines the shape of jam
fronts and limits the possible shock densitigs and p~
which are related to the downstream front of a wide jam to
the twodistinct valuesp™ = p[l,, and p~ = p[;, determined
0 ’ . \ . by Egs.(57) and(58).

0 PoPer 50 100 Py p (vehicles/km) The LW model, Egs.(77) and (78), was numerically
c]simulated to obtain a more complete picture of the behavior
jam shown in Figs. ) and 7c) (line J) and of the part of the of traffic jams in the LW mode(F_lgS. 9-12[52]. For this
fundamental diagranicurve H) which corresponds to a stable ( PUrPose, the program and algoritts3] based on the Go-
<pp) and a metastablepf<p<p.,) states[6] of a homogeneous dgnov’_s _schem§54,55] were used. In the example s_hown in
traffic flow. Results of the numerical calculations. The model andFig. 9 it is assumed that a jam has already formed in a traffic
the parameters are the same as in Fig. 7. flow by the timet=0 [Fig. 9a), t=0]. The jam disappears

monotonously as it propagates further along the highway
Whitham (see Ref[10], pp. 46—-52. Therefore, any homo- (Fig. 9,t=5 and 30 min. Therefore, the LW model depicts
geneous state of traffic flow in the LW model is stable be-2 disappearing jam, with the flux upstream from the jam
cause every initial density perturbation will ultimately fade equaling the flux downstream from the jam, whereas the ex-
over time[10,38. In contrast, the model Eq$l)—(3) [7] periments in this case depict the formation of an essentially
show that, if the flux is higher than the bounddtiyreshold  Stationary moving jam on the highwg]. It can be expected
value q,,, Eq. (74), a critical localized perturbation grows that if the flux upstream from the jarine., the flux into the
when its amplitude has exceeded a certain value. This result8Mdin) is higher than the flux downstream from the jéime

in the self-formation of traffic jamg6]. The velocity of the ~ flux in the outflow from the jant,,,), the jam will not dis-
downstream front of a wide jawi]’, Eq.(59), can be written ~ appear and its width will monotonously increase over time.

400t

FIG. 8. A representation of the downstream front of the secon

in the form However, the manner in which the jam propagdfeg. 10
is qualitatively identical to the case described abghig. 9),
Q(pM™)—Q(p™ ) i.e., according to the LW model and contrary to the experi-
= Ta Sulliey (80)  ments[4,5], the jam disappears under such conditighig.
Pmax— Pmin 10).
p(vehicles/km) t=0min

hicles/h T
atvehicles) N

100
2000
50

1000} .

% 10 20 x(km) ) °3 50 p(vehicles/km)
p(vehicles/km) t=5min

ehicles/h
100 alveiclesy Ny

AN 2000
(a) 50 (b)
1000}

0 ok

100

0 10 20 x(km) .0 50 p (vehicles/km)
p(vehicles/km) t =30 min
vehicles/h
atvenicsSly -

2000

so0f 0 [T ]
1000f

0 -
0 10 20 x(km) e 50 p (vehicles/km)

FIG. 9. The propagation of a traffic jam in the LW mod&B) with cyclic boundary conditiofi52]: (a) the distributions of the density
in different moments of time(b) the kinetic of the jam’s propagation in thg,() phase plane. Dotted lines {h) represent the fundamental
diagramQ(p) = pv(1— p/p) [10] which was used in the LW modér'8), v;=110 km/h,p= 120 vehicles/km. The initial distribution of the
density ¢=0): the density inside the jam is equal to 120 vehicles/km, the width of the jam is 2 km, and the density outside the jam is equal
to 40 vehicles/km.
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p(vehicles/km) t=0min
vehicleshy™ ... -
al 30&? < .
100 .
2000
50
1000 B
0 0 9
0 10 20 x{km 0 50 p {vehicles/km)
p (vehicles/km} t=5min
q(vehicles/h)
3000
106 /Q
2000 . “
@ 44 ()
- 1000} -
0 ok -
0 10 20 x(km) 0 50 p(vehicles/km)
p(vehicles/km) t =15 min
vehicles/h )
Q( I 306(} ﬁ .
100
2000f
1000 B
0 ol

0 10 20 x{(km) 0 50 p{vehicles/km)

FIG. 10. The propagation of a traffic jam in the LW modé8) when the flux into the jam exceeds the flux out from the jéanthe
distributions of the density in different moments of tinfl) the kinetic of the jam propagation in the,() phase plane. Dotted lines {h)
represent the fundamental diagram. The initial distribution of the densiy0): the density upstream from the jam is equal to 40
vehicles/km, the density downstream from the jam is equal to 20 vehicles/km. The boundary conditip(8,tare40 vehicles/km and
p(L,t)=20 vehicles/km. The other parameters are the same as in Fig. 9.

The examples presented in Figs. 9 and 10 correspond tine experimental properties of jar(i$—(v) discussed in Sec.
the behavior of a jam described by the LW model having al A. For example, the experiments show that a jam’s down-
convex fundamental diagra®@(p). When the fundamental stream front moves at an essentially constant velocity,
diagramQ(p) has a concave pafFig. 11, the initial jam  whereas the LW model indicates that the veloeityof the
disappears in the same manner as shown in Figs. 9 and 1€hock wave, which is related to the downstream front of the
although this disappearance has certain distinctive featuremm, varies markedly over time. In particular, the velocity is
In particular, shock waves are formed both upstream and,~-—-13km/h att=0, vg~-—16 km/h att=5min, and
downstream from the jar(Fig. 11,t=5 min) [56,57]. Nev- v¢~—52 km/h att=18 min (Fig. 11).
ertheless, the properties characterizing jam propagation in For a more detailed comparison of the LW model and the
the LW model[Fig. 11(a)] are qualitatively different from  experimental observations, the density distribution experi-

p(vehicles/km) t=0min
q(vehicles/h)
150 1500f .
100 1000} ;
50 500}
0 ot .
0 10 20 x{km) ) 0 50 100 p{vehicles/km)
p(vehicles/km) t=5min
qg(vehicles/h)
150 1500
00 :
@ 1! (b 1000 ;
50 500}
0 ot .
0 10 20 x(km} 0 50 100 p(vehicles/km)
o (vehicles/km) t=18min
q(vehicles/h)
150 1500
100 1000f -
SN2
50 J\\ 500t
0 ot :
0 10 20 x(km) 0 50 100 p{vehicles/km)

FIG. 11. The propagation of a traffic jam in the LW mod&8) with a cyclic boundary conditiof62] when the fundamental diagram has
a concave parta) the distributions of the density in different moments of tinfia); the kinetic of the jam propagation in the,f) phase
plane. Dotted lines irtb) represent the fundamental diagr&p), which is the same as in Fig. 7. The initial distribution of the density
(t=0): the density inside the jam is equal to 140 vehicles/km, the width of the jam is equal to 2 km, and the density outside the jam is equal
to 20 vehicles/km.
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FIG. 12. A comparison of a propagation of jams based on the LW m@@gisee Ref[52]) and the experiments made in REf]: (a)
The initial distribution of the density and the corresponding distributions of the figrand of the average speed of vehiclegb) and(c).
The distributions of the density and the corresponding distributions of thecfland of the average speed of vehickesduring the
propagation of jams along a road. The fundamental diagpdp) is the same as in Fig. 7.

mentally observedFig. 2 in Ref.[4]) at 14:09 was used as mental observationf4]. It can thus be concluded that the
the initial condition[Fig. 12a)]. The following results were LW theory of kinematic waves cannot explain properties
obtained(i) In contrast to the experimental observatiphk (v) of experimentally observed traffic jantSec. IV A).
according to the LW model, the two jams merged in a mere

8 min, at 14:17Fig. 12b)]. The amplitude of the resulting C. Traffic jams and shock waves in gas dynamics

density distribution did not increase following this merger . .
but continued to fade over time in the same manner as in L€t US compare the properties of the fronts of traffic jams

Figs. 9—11.ii) In contrast to the experimental observations"ith the properties of shock waves in gases. Integrating Eq.
[4], the LW model failed to yield a downstream jam front (14 over the upstream-front region yields
with an essentially stationary moving structure. In particular, 2 2
the velocity of the downstream front of the second jam in- , ——| _g*( —% 4, —,M

. ) . ) g ds m T U Ug
creased in magnitude over time: it wag~ —14.4 km/h at Xy U= Uy 1
14:09, andvs~—31km/h at 14:15. After the two jams (81
merged, the results wene;~ —41 km/h at 14:17 an@ s~ _ )
—52km/h at 14:24(iii) The entire initially localized two- ~Wwhere the indexes 1 and 2 correspond, respectively, to the
jam structure gradually disappeared according to the L\Waverage vehicle speed upstream ¢=vp,) and down-
model but retained its initial properties according to experi-stream ¢ =vp;,) from the upstream front of a wide jam.

2

2
+f F(v,q5 ,vg)dx=0,
1
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Since the upstream front of the jam is on the orderugf d2%y
<1 and the derivativelv/dx in the area outside the sharp Mo djx:q* ax G(v,vg)—F(v,9%,vg), (A1)

upstream front is on the order of 1, the first and last terms on
left-hand side of Eq(81) can be ignored to an accuracy of \yhere
o<1 to obtain

G(v,vg)=v+cg(v—vg)7l. (A2)
p(pmin) +pmin(vmax_ 031)2: p(pmax) + pmaxvmin_ Ug])z'
(82 Substituting Eq(19) into Eq. (Al) yields a set of equations

This equation is obtained using formulB2) and the expres-

sionp(p) =c3p. Based on Eqg12) and(82), the following 1 d%™ d%p(m
formula can be obtained: % dgz + ko dx'2
(Viax~vg) (U min~vg) = Co, (83) g d — , d
= R (M) (3!
o d{ G(gwu‘O)_l—q dX, GG (X UL‘LO)’Ug)

which has already been derived from the asymptotic theory -

(55) _F(gvﬂo)_F(;(m)(X,uU«o)aq*aUg)a m= 1121
It should be noted that formuléB3) also appears in the

well-known gas-dynamic theory of shock waves in the case

of polytropic gasese.g., Ref[37]). Formulas(12) and(82)

do indeed have the form of continuity conditions for the

mass and impulse fluxes, respectively, in a reference system

moving at velocityvg=um. The same conditions are met by F_(g”uo): F@™(Z, o) + 0™ (1ol mo),q* )

(A3)

where

[¢]
shock waves in gasd87]. However, thedownstreanfront

of a jam has no analogy for the continuity condition of an —F@"™ (10l 10),9* 0g), (A4)
impulse flux. This front is a stationary moving structure

formed by self-organizing processes of a traffic flow. The _

shape and parameters of the downstream front are obtained G(£,u0)=GO™(L,10) + 0™ (ol 10) 0 )
based on Eq27) for a smooth distribution derived under the (m)

assumption that the first term in E(.4) is negligibly small -G (Kodik0) 0 g)-

and can be omitted.
Next, Egs. (23)—(26) are substituted into Eq(A3)

Therefore, there is an important difference between a dth Y ¢ . d d
shock wave in a gas and a traffic jam. The parameters of §1d the nonlinear functions,@ [Egs. (A4) and (A5)], an

shock wave in a gas are determined by the continuity condig(l;(@(xr_'ﬂo)’”g)’ FO™(X',10),0* v ) are expanded as
tions for the mass, impulse, and energy fluxes across th@ SEries iuo (uo<1). The terms of the same order jn
shock wave[37], and are hence dependent upon the param@" the left and right sides of EgA3) are then equ_ated, and
eters of the initial states of the gas upstream and downstreafi€ terms dependent ori and{[Eq. (20)], respectively, are
from the wave. In contrast to this, the parameters of theé€Parated. As aresult, from E4A3) and(A2) in the zeroth
downstream front of a wide jam represent the characteristi@PProximation inuo Egs.(27) and(29) can be deduced. Itis
parameters of a traffic flow because they are independent &®ken into account here that

the initial state of the traffic flow. The qualitative difference

between the traffic flow approach and the gas-dynamic ap- — 2 -
proach can be understood even better in view of the fact that G(g'“O):;gm)(g)JrCO(;gm)(g)“Lv

(A5)

M(0)—vgo

the param_eters of the upstream front of % wide jam in a traffic _ 03(58“)(0) _ vg,0)71+ O(xg), mM=12.
flow [particularly, the values ., and v, and the front
velocityvg1 in Eq. (83)] cannot be computed without solving (AB)

Eq. (27) for th t front of the jam.
G- (27) for the downstream front of the jam In the zeroth approximation ipq, the boundary condi-

tions (30) can be determined based on E¢E5), (19 and
ACKNOWLEDGMENTS (21). Substituting expansion24) into Eqg.(21) leads to Eq.
We would like to thank G. Breuel for her fruitful sugges- (32 Equation(31) is obtained by substituting E¢19) and

tions, and M. Schilke and A. Brenneis for their help in car-€xpansions23) and(24) into Eq. (22), taking Eq.(20) into
rying out the numerical calculations. account, and equating zero-order termsgg. Condition

(33) is deduced from Eqg18), (19), and (23)—(26), taking
into account that functions{™(¢) (m=1,2) are different
from zero only in the region where the sharp upstream front

In this appendix, Eq927) and(29) are deduced together is located. The width of the front is a value on the order of
with conditions (30)—(33) in accordance with the singular wolg. Integration over this region yields only a small contri-
perturbation methof46]. Equation(14) can be rewritten in  bution in Eq.(18), which should be ignored in the zeroth
the form approximation inwg.

APPENDIX
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m(p) =V (pmin) +co(1—plpTi,) and the functiorV(p) at some
Co=Cp . At co=cg the line ¢, (p) is obviously tangent to the
curveV(p), i.e., the value} corresponds to a solution of the
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