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Asymptotic theory of traffic jams
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Based on singular perturbation methods, an asymptotic theory of traffic jams of large amplitude is devel-
oped. Simple equations describing the form of traffic jams of large amplitude are found. The theory leads to
analytical formulas for thecharacteristic, i.e., intrinsic or unique, parameters of traffic flow~such as the
average velocity of the downstream front of a wide jam, as well as the flux, density and average vehicle speed
of the outflow from the jam! which are independent of the road length, the vehicle density of the initial traffic
flow, or other initial conditions. Analytical investigations have been made that show that, in agreement with
earlier numerical results@B. S. Kerner and P. Konha¨user, Phys. Rev. E50, 54 ~1994!#, the boundary~threshold!
flux at which a traffic jam can still exist is equal to the flux in the outflow from a jam. The manner in which
the shape of a traffic jam evolves due to changes in the initial vehicle density is analytically investigated.
Simple analytical formulas are obtained for the parameters of narrow traffic jams capable of forming in a
limited interval of vehicle densities. A comparison is also made between the results of the present analytical
theory of traffic jams, the theory of shock waves in gas dynamics, the classical Lighthill-Whitham-theory@M.
J. Lighthill and B. G. Whitham, Proc. R. Soc. London Ser. A229, 317 ~1955!# of kinematic waves, and the
recently discovered experimental features and characteristics of wide traffic jams in actual traffic.
@S1063-651X~97!06710-X#

PACS number~s!: 47.54.1r, 05.40.1j, 89.40.1k
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I. INTRODUCTION

Traffic jams usually occur when the density of vehicles
traffic is high enough~e.g., Refs.@1–3#!. In particular, Trei-
terer has found out that a traffic jam could spontaneou
occur without obvious reason in a traffic flow and that
occurrence of the jam has been accompanied by a hyste
phenomenon@3#. Recently Kerner and Rehborn have fou
out from their experimental investigations of ‘‘wide’’ traffi
jams, i.e., jams that are considerably wider than widths
both upstream and downstream jam’s fronts, that the ja
have somecharacteristic parameterswhich do not depend
on initial conditions of traffic@4,5#. These characteristic pa
rameters are~i! the mean values of the flux, of the densit
and of the average speed of vehicles in the outflow from
wide jam; ~ii ! the mean value of the density of vehicles i
side the jam; and~iii ! the average velocity of the jam’
downstream front. These parameters can be almost the s
for different jams. In addition, for each of wide jams th
characteristic parameters can, on average, remain essen
constant over time. Wide jams possess the mentioned p
erties if the following conditions are fulfilled:~i! traffic pa-
rameters~weather, other road conditions, etc.! remain essen-
tially constant; and~ii ! there are no hindrances for traffic i
the outflow from a wide jam, exactly, if a ‘‘free’’ traffic flow,
where vehicles are able to change a lane and to pas
formed in the outflow from the wide jam@4,5#.

The existence of characteristic parameters of traffic fl
was first predicted, and theoretically investigated, by Ker
and Konha¨user@6# in their numerical and qualitative analy
ses of a macroscopic traffic flow model based on
‘‘Navier-Stokes-like’’ equation for a traffic flow@7#. Besides
a kinetic~macroscopic! approach to the study of traffic flow
~e.g., Refs.@7–18#!, there is also a ‘‘microscopic’’ approach
561063-651X/97/56~4!/4200~17!/$10.00
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in which the behavior of each individual vehicle is taken in
account~e.g., Refs.@1,19–27#!. Various microscopic traffic
flow models, as well as macroscopic traffic models, show
transition from an initially homogeneous to a jammed st
@6,7,14–18,21–32#. A review of different traffic flow models
can be found in the book by Helbing@28#. In particular,
qualitative results of investigations of jams by Komatsu a
Sasa@33# based on the microscopic dynamical traffic flo
model of Bandoet al. @26# are in agreement with the earlie
conclusions, made by Kerner and Konha¨user @6#, that the
parameters of the downstream front of wide traffic jams r
resent the characteristics, i.e., intrinsic~unique! parameters,
of a traffic flow. It should be noted that the property of jam
that some of their parameters are the characteristic par
eters of a system is also common for theautosolitonsformed
in many active physical, chemical, and biological syste
~for a review, see Refs.@34,35#!. A comparison between the
properties of jams and the properties of the autosolitons
physical systems was given in Ref.@36#.

In this paper an asymptotic theory of large-amplitude tr
fic jams which are commonly observed in experimental
vestigations will be developed based on the mathemat
method of singular perturbations. The asymptotic theory
jams will be presented in Sec. II. In Sec. III, simple formul
for the characteristic parameters of a traffic flow are deriv
based on this theory. An analytical investigation of evolvi
of jams will also be given in this section for a case in whi
the initial density of vehicles is changed. Section IV conta
a comparison between the jam properties found in the p
sented theory, on the one hand, and the properties of sh
waves in gas dynamics~e.g., Ref.@37#!, the properties of
kinematics waves@38#, and the experimental features of tra
fic jams @4#, on the other hand.
4200 © 1997 The American Physical Society
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56 4201ASYMPTOTIC THEORY OF TRAFFIC JAMS
II. SINGULAR PERTURBATION THEORY
FOR STATIONARY MOVING JAMS

A. Macroscopic traffic flow model

1. Basic equations

If the density of vehicles on a road is not too low and on
the average characteristics of their motion are of interest,
traffic flow can be considered as a one-dimensional co
pressible flow of particles@9–12#. In this kinetic approach a
macroscopic model of traffic flow reads@7#

]r

]t
1

]q

]x
50, ~1!

rF]v
]t

1v
]v
]xG5r

V~r!2v
t

2c0
2 ]r

]x
1m

]2v
]x2 , ~2!

v~0,t !5v~L,t !,
]v
]xU

0,t

5
]v
]xU

L,t

, q~0,t !5q~L,t !. ~3!

To find the characteristic parameters of a wide jam on a ro
it is sufficient to analyze the characteristic parameters o
large-amplitude stationary wide jam moving along a circu
road. Numerical investigations of jams and their physi
attributes@6# indeed demonstrate that the characteristic
rameters of both localized wide traffic jams in an open s
tem and the characteristic parameters of stationary wide j
~wide clusters! moving along a circular road are virtually th
same. Therefore, boundary conditions~3! can be used with
the macroscopic traffic flow model.

In Eqs. ~1!–~3! r(x,t) is the density (0,r<r̂) and
v(x,t) is the average speed of vehicles (v>0), r̂ is the
maximum possible density on the road,q5rv is the flux,L
is the length of the road, andV(r) is the speed-density rela
tionship, i.e., a safe~‘‘maximum and out-of-danger’’! speed
which is achieved only in a traffic flow that is both time
independent and homogeneous. In a homogeneous sta
traffic flow, the density will be designated asrh , the average
speed asvh , vh5V(rh), and the flux asqh , qh5rhvh .
V(r) is a monotonically decreasing function ofr, i.e., its
derivative@8–12,39#

dV~r!/dr<0. ~4!

In the numerical investigations of jams performed in Re
@6,16,40–43# and in Sec. IV of this paper, the followin
functionV(r) in Eq. ~2!, which describes the properties of
traffic flow, has been used@7#:

V~r!5v fF H 11expS r2r i0

b D J 21

2dG
where d5H 11expS r̂2r i0

b D J 21

. ~5!

In Eqs.~2! and ~5!, c0 , m, t, v f , r i0 , b and r̂ are constant
values which related to the given parameters of tra
~weather, other road conditions, etc.! @6,7,16#. The physical
meaning of the equation of motion~2! and of the mentioned
parameters of the model have been considered in R
@16,40,41#.
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As in the numerical investigations of jams@6#, it will be
assumed in this paper that a functionV(r) and a valuec0 in
Eq. ~2! provide that there is a finite range of the densit
rc1,rh,rc2 that corresponds to a case in which the traf
flow is brought into unstable homogeneous states by an
crease in the density. This instability occurs with respect t
growth of small long-wave nonhomogeneous perturbati
@44# at a wave numberk52p/L @7#. The condition for this
instability is @7,45#

F212
r

c0

dV

dr Gr.mtS 2p

L D 2

; ~6!

therefore, the valuesrc1 ,rc2 will satisfy the conditions

F212
rci

c0

dV

drU
rci

Grci5mtS 2p

L D 2

, i 51,2. ~7!

2. Equations for stationary moving jams

As already mentioned, the characteristic parameters
wide jams are nearly identical to the parameters of a w
jam moving at a constant velocityvg along a circular road
@6#. To find the equations for such jams, let us substitut
variablex⇒x2vgt into Eqs.~1!–~3!. In this new system of
coordinates, the macroscopic traffic flow model describ
objects moving at a velocityvg takes the form

]r

]t
1

]q*

]x
50, ~8!

rF]v
]t

1~v2vg!
]v
]xG5r@V~r!2v#2c0

2 ]r

]x
1m0

]2v
]x2 ,

~9!

and conditions~3!. In Eq. ~8!,

q* 5r~v2vg!. ~10!

Here and subsequently the coordinatex is measured in units
of l 05c0t, the time in units oft, and the densityr in units
of r̂; the speedv in units of c0 , the coefficientm0 will be
defined as

m05
m

c0
2tr̂

. ~11!

It should be noted that in Eq.~9! the coefficientc0 has been
written in dimensionless form, i.e., it is equal to 1. Howev
this coefficient shall be retained in the formulas in expli
form to provide a convenient comparison with the results
the work @6#.

For the time-independent functionsv(x) andr(x), which
describe stationary moving jams in the new system of co
dinates, it is possible to deduce from Eqs.~8! and~3! that the
valueq* , Eq. ~10!, is independent of the coordinatex:

q* 5r~v2vg!5const, ~12!

i.e., that the value of the average speed of vehiclesv will
alone depend on thex on the right-hand side of the formul
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r5
q*

v~x!2vg
. ~13!

It should be noted that, in accordance with Eq.~12!, the
relation between the fluxq5rv and the densityr of the
stationary moving jam is represented by the linear expres
q5q* 1rvg . As follows from Eqs.~9! and ~13!, the corre-
sponding functionsv(x) which describe the possible shap
of stationary moving vehicular jams satisfy the equation@6#

m0

d2v
dx2 1q* F c0

2

~v2vg!221G dv
dx

1F~v,q* ,vg!50

~14!

and the boundary conditions

v~0!5v~L !,
dv
dxU

0

5
dv
dxU

L

, ~15!

where

F~v,q* ,vg!5
q*

~v2vg! FVS q*

~v2vg! D2vG . ~16!

An additional condition which connects the functionsv(x)
with the corresponding value ofq* can be deduced from th
obvious integral condition@7#

E
0

L

r~x,t !dx5rhL. ~17!

If in this condition formula~13! is taken into account for the
stationary case under consideration, then

E
0

L dx

v~x!2vg
5

rhL

q*
. ~18!

Together with the boundary conditions~15!, Eqs. ~14! and
~18! pose an eigenvalue problem whose spectrum defines
possible values of the velocityvg , and whose eigenfunction
v(x) determine the shapes of different jams.

B. Equations for smooth and sharp distributions

Let us consider a case in which the parameterm0 in Eq.
~14! is small, i.e.,m0!1. Then, according to the theory o
singular perturbations@46#, a solution of Eq.~14! can be
represented as a combination ofsmooth distributions
ṽ(x8,m0) characterized by the length 1~i.e., l 0! and the
sharp distributionsv̄(z,m0) characterized by the lengthm0
~i.e., m0l 0!:

v~x!5v ~m!~x!, v ~m!~x!5 ṽ ~m!~x8,m0!1 v̄ ~m!~z,m0!,

m51,2, ~19!

where

z5~x2x0!/m0 , x85x2x0 ;

m51 for 0<x<x0 and m52 for L>x>x0 , ~20!
n

he

and where the pointx5x0 is in the region containing the
sharp front~Fig. 1!. In Eq. ~19!, the solution forv(x) is
represented as a combination of the functionv (1)(x) defined
on the interval 0<x<x0 and the functionv (2)(x) defined on
the intervalL>x>x0 , because the smooth distributionsṽ (1)

(x8,m0) and ṽ (2)~x8,m0) in Eq. ~19! can be sufficiently dif-
ferent in the regions upstream and downstream from
sharp front.

According to the singular perturbation theory@46#, the
functions v̄ (1)(z,m0) and v̄ (2)(z,m0) exponentially decay
with increasinguzu, i.e.,

v̄ ~1!~2`,m0!50, v̄ ~2!~1`,m0!50. ~21!

Furthermore, at the pointx5x0 , the functionsv (1)(x) and
v (2)(x) satisfy the boundary conditions

v ~1!~x0!5v ~2!~x0!,
dv ~1!

dx U
x0

5
dv ~2!

dx U
x0

. ~22!

Let us seek the functionsṽ (m)(x8,m0), and v̄ (m)(z,m0)
involved in Eq. ~19!, and the valuesvg and q* in series
form:

ṽ ~m!~x8,m0!5 ṽ0
~m!~x8!1m0ṽ1

~m!~x8!1m0
2ṽ2

~m!~x8!

1••• , m51,2, ~23!

v̄ ~m!~z,m0!5 v̄0
~m!~z !1m0v̄1

~m!~z !1m0
2v̄2

~m!~z !1••• ,

m51,2, ~24!

vg5vg,01m0vg,11m0
2vg,21••• , ~25!

q* 5q0* 1m0q1* 1m0
2q2* 1••• . ~26!

By substituting expansions~19! and~23!–~26! into Eq. ~14!,
into boundary conditions~15!, ~21!, and~22!, and into inte-
gral condition~18! and then performing the singular pertu
bation method, it is possible to find, in the zeroth appro
mation in m0 , the equation for the smooth distribution
ṽ0

(m)(x8) ~see the Appendix!,

FIG. 1. The qualitative shape of the vehicle density and
average vehicle speed distributions in a wide~a! and in narrow~b!
jam stationary moving along a circular road.
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q0* F c0
2

~ ṽ0
~m!2vg,0!

221G dṽ0
~m!

dx8
1F~ ṽ0

~m! ,q0* ,vg,0!50,

m51,2, ~27!

where

F~ ṽ0
~m! ,q0* ,vg,0!5

q0*

~ ṽ0
~m!2vg,0!

FVS q0*

~ ṽ0
~m!!2vg,0

D 2 ṽ0
~m!G ,

m51,2, ~28!

and the equation for the sharp distributionsv̄0
(m)(z) is

d2v̄0
~m!

dz2 1q0* F c0
2

@ v̄0
~m!1 ṽ0

~m!~0!2vg,0#
221G dv̄0

~m!

dz
50,

m51,2. ~29!

The appropriate boundary conditions are

ṽ0
~1!~2x0!5 ṽ0

~2!~L2x0!, dṽ0
~1!/dx8u2x0

5dṽ0
~2!/dx8uL2x0

,
~30!

v̄0
~1!~0!1 ṽ0

~1!~0!5 v̄0
~2!~0!1 ṽ0

~2!~0!,

dv̄0
~1!/dzu05dv̄0

~2!/dzu0 , ~31!

v̄0
~1!~2`!50, v̄0

~2!~1`!50, ~32!

and the integral condition is

E
2x0

0 dx8

@ ṽ0
~1!~x8!2vg,0#

1E
0

L2x0 dx8

@ ṽ0
~2!~x8!2vg,0#

5
rhL

q0*
.

~33!

The manner in which Eqs.~27!–~29! and conditions~30!–
~33! are derived is shown in the Appendix. The solution
Eqs. ~27! and ~29!, obtained under the boundary conditio
~30!–~32! and the integral condition~33!, determines, in the
zeroth approximation inm0!1, the shape of a stationar
moving jam, its velocityvg , and the valueq* :

v~x!5 ṽ0
~m!~x8!1 v̄0

~m!~z !1O~m0!, m51,2,
~34!

vg5vg,01O~m0!, q* 5q0* 1O~m0!.

The results of numerical investigations@6# indicate that,
depending on the densityrh , two types of stationary moving
jams can be expected:~i! wide jams@Fig. 1~a!# and ~ii ! nar-
row jams @Fig. 1~b!#. In contrast to a narrow jam, the dis
tanceLs between the fronts of a wide jam, where the dens
and the average speed of vehicles vary sharply, is believe
exceed considerably the widths of the both fronts@Fig. 1~a!#.
f

y
to

C. Shape of wide traffic jams

1. Sharp distributions

Equation~29! for sharp distributions is a convenient sta
ing point for determining the shape of a wide traffic ja
@Fig. 1~a!#. Integrating Eq.~29! with respect toz yields an
equation of the form

dv̄0
~m!

dz
2q0* F c0

2

v̄0
~m!1 ṽ0

~m!~0!2vg,0
1 v̄0

~m!1 ṽ0
~m!~0!2vg,0G

1B~m!50, m51,2, ~35!

whereB(1) and B(2) are constants, and where the consta
2q0* @ ṽ0

(m)(0)2vg,0# is added to the left-hand side of Eq
~35! in order to simplify the subsequent analysis. It follow
from Eqs.~35! and ~31! that constantsB(1) andB(2) in Eq.
~35! are equal to each other, i.e., thatB(1)5B(2)5B. It is
thus possible to introduce the variable

v̄* ~z!5H v̄0
~1!~z !1 ṽ0

~1!~0!2vg,0 ,

v̄0
~2!~z !1 ṽ0

~2!~0!2vg,0 ,
z<0
z.0, ~36!

and to rewrite Eq.~35! in the form

dv̄*

dz
5 f ~ v̄* !. ~37!

In Eq. ~37!, the functionf ( v̄* ) is

f ~ v̄* !5w~ v̄* !2B, where w~ v̄* !5q0* ~ v̄* 1c0
2/ v̄* !.

~38!

The boundary conditions~32!, written in terms of the vari-
able v̄* read

v̄* ~2`!5 ṽ0
~1!~0!2vg,0 , v̄* ~1`!5 ṽ0

~2!~0!2vg,0 ,
~39!

i.e., the solutionv̄* (z) tends to constant values with increa
ing uzu. Equation~37! has solutions which correspond to th
boundary conditions~39! only if the functionf ( v̄* ) becomes
zero atv̄* 5 v̄* (2`) and v̄* 5 v̄* (1`) @Eq. ~39!#, i.e., if
there are real solutions,v̄1* 5 v̄* (2`), and v̄2* 5 v̄* (1`),
of the equation

f ~ v̄* !50. ~40!

The latter is only possible if the constantB in Eq. ~38! ex-
ceeds the minimum value of the functionw( v̄* ) in Eq. ~38!.
In this case Eq.~40! has two real roots,v̄* 5 v̄1* andv̄2* @Fig.
2~a!#, which are equal to the valuesv̄* (2`) and v̄* (1`)
in Eq. ~39!, respectively:

v̄1* 5 ṽ0
~1!~0!2vg,0 and v̄2* 5 ṽ0

~2!~0!2vg,0 . ~41!

It follows from Eqs.~38! and ~40! that the constantB in
Eq. ~38! can be expressed in terms of the rootsv̄1* andv̄2* as
follows:

B5q0* ~ v̄1* 1c0
2/ v̄1* !5q0* ~ v̄2* 1c0

2/ v̄2* !. ~42!
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The second equality in Eq.~42! indicates that the value
v̄1* ,v̄2* satisfy the condition

v̄1* • v̄2* 5c0
2. ~43!

Taking into account Eq.~41!, this condition can be written a
follows:

~ ṽ0
~1!~0!2vg,0!~ ṽ0

~2!~0!2vg,0!5c0
2. ~44!

The function f ( v̄* ),0 at any v̄* in the interval v̄1*
. v̄* . v̄2* @Fig. 2~a!#. Therefore, it can be found based o
Eq. ~37! that the derivativedv̄* /dz,0. This means that only
a solution describing a decrease in the average speed o
hicles is the possible solution for the entire class of the sh
distributions. In other words, only the left~upstream! front of
a wide jam, where the average speed of vehicles is a dec
ing function of the coordinate@Fig. 1~a!#, can be described
by such sharp distributions. Figure 3~a! shows the shapes o
the corresponding sharp distributionsv̄0

(1)(z) and v̄0
(2)(z),

given asv̄0
(m)(z)5 v̄* (z)2 ṽ0

(m)(0)1vg,0 , m51,2 @see Eq.
~36!#, where v̄* (z) is the solution of Eq.~37! under the

FIG. 2. The qualitative shapes of the functionf ( v̄* ) involved in
Eq. ~37! ~a!, of the functionF( ṽ0

(m) ,q0* ,vg,0), m51,2 and involved
in Eq. ~27! ~b! and the illustrating of a graphical solution of Eq.~47!
~c!. In ~c!, curveH is the fundamental diagramQ(r), and line 1
corresponds to the function~48! at q0* ,vg,05const andvg,0,0.

FIG. 3. The qualitative shape of sharp~a! and smooth~b! dis-
tributions of the average vehicle speed in a wide stationary mov
jam.
ve-
rp

as-

boundary conditions~39!. The sharp distributionsv̄0
(1)(z)

and v̄0
(2)(z) @Fig. 3~a!#, namely, the functionsv̄0

(1)(z)1

ṽ0
(1)~0! andv̄0

(2)(z)1 ṽ0
(2)(0), describe the distribution of the

average speed of vehicles in the left~upstream! front of a
wide jam @Fig. 1~a!#. In the latter formulas and in Eq.~44!,
the valuesṽ0

(1)(0) and ṽ0
(2)(0) must be determined by a

analysis of Eq.~27! for a smooth distribution describing th
right ~downstream! front of the jam.

2. Smooth distributions

As already mentioned in Sect. II C 1, sharp distributio
cannot describe the right~downstream! front of a wide jam,
where the average speed of vehicles increases@Fig. 1~a!#. We
will demonstrate that this front corresponds to a smooth d
tribution located in the intervalm52 (0<x8<L2x0). To
do this, we will consider the shape of the functio
F( ṽ0

(2) ,q0* ,vg,0) @Fig. 2~b!# given by Eq. ~28! for certain
constant valuesq0* andvg,0 . Let us examine first the prop
erties of the rootsṽ0

(2)5v i of the equation

F~ ṽ0
~2! ,q0* ,vg,0!50 at q0* 5const, vg,05const.

~45!

Using formula~13!, namely,

r5
q0*

ṽ0
~2!2vg,0

, ~46!

it is possible to write Eq.~45! in the form of equation

rV~r!2rvg,02q0* 50 where q0* 5const, vg,05const.
~47!

The rootsr5r i of Eq. ~47! can be determined as intersectio
points at which the fundamental diagramQ(r)5rV(r)
@curveH in Fig. 2~c!# is intersected by a line

q~r,q0* ,vg,0!5q0* 1rvg,0 ~48!

@straight line 1 in Fig. 2~c!#. It can be seen that there ar
always functionsQ(r) and ranges of the valuesq0* 5const
and of negative velocitiesvg,0,0 such that the straight line
q(r,q0* ,vg,0) intersects the fundamental diagramQ(r) at
three pointsr i , i 51,2,3 @Fig. 2~c!# and hence Eq.~47! has
three rootsr5r i , i 51,2,3. As it follows from Eqs.~45!,
~46!, and ~28!, the relation between the rootsr5r i ~where
i 51,2,3! of Eq. ~47! and three corresponding roots of E
~45! ṽ0

(2)5v i ~wherei 51,2,3!, is expressed by the formula

v i5V~r i !, i 51,2,3. ~49!

wherev1,v2,v3 . When determining the shape of the fun
tion F( ṽ0

(2) ,q0* ,vg,0), Eq. ~28!, note that the value of func
tion F( ṽ0

(2) ,q0* ,vg,0) is equal to the differenceQ(r)
2q(r,q0* ,vg,0), wherer5q0* /( ṽ0

(2)2vg,0). Within the den-
sity ranger2,r,r1 , when v2. ṽ0

(2).v1 , the inequality
Q(r),q(r,q0* ,vg,0) holds true@Fig. 2~c!#, therefore giving
F( ṽ0

(2) ,q0* ,vg,0),0. Within the density ranger3,r,r2 ,
when v3. ṽ0

(2).v2 , the inequality Q(r).q(r,q0* ,vg,0)
g
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holds true@Fig. 2~c!#, therefore givingF( ṽ0
(2) ,q0* ,vg,0).0.

Hence, the functionF( ṽ0
(2) ,q0* ,vg,0) has the shape shown i

Fig. 2~b!.
It follows from Eq. ~49! that the pointsv i , i 51,2,3 are

located on the fundamental diagram, i.e., they may co
spond to homogeneous states of traffic flow. It was sta
earlier that a homogeneous state of a traffic flow is unsta
with respect to long-wave, small-amplitude perturbatio
within the interval of the densityrc1,r,rc2 , i.e., within
the interval of the average speed of vehiclesvc1.v.vc2 ,
wherevci5V(rci), i 51,2 @see Eqs.~6! and ~7!#. Numerical
investigations@6# have proven that the pointsṽ0

(2)5v1 ,v3

satisfy the conditionsv1,vc2 andv3.vc1 , i.e., they corre-
spond to a stable state of a homogeneous traffic flow,
that the point ṽ0

(2)5v2 corresponds to an unstable sta
vc1.v2.vc2 . Therefore, any solution is unstable if it in
cludes an extended essentially homogeneous part for w
ṽ0

(2)'v2 . For this reason such unstable solutions will not
taken into consideration.

The downstream front of a wide jam is a transition lay
between a homogeneous traffic flow with a lower avera
speed of vehicles and another state of homogeneous
with a higher average speed of vehicles@Fig. 3~b!#. There-
fore, this front can only correspond to the solutionṽ0

(2)(x8)
of Eq. ~27! that starts at the pointṽ0

(2)5v1 and ends at the
point ṽ0

(2)5v3 @Fig. 3~b!, 0<x8<L2x0#. This means that

ṽ0
~2!~0!5v1 , ṽ0

~2!~L2x0!5v3 . ~50!

The solution under consideration exists only if the derivat
dṽ0

(2)/dx8Þ0 at the intermediate pointṽ0
(2)5v2 , where

F(v2 ,q0* ,vg,0)50. As follows from Eq.~27!, the fulfillment
of both conditions

dṽ0
~2!/dx8u ṽ 0

~2!5v2
Þ0, F~ ṽ0

~2! ,q0* ,vg,0!u ṽ 0
~2!5v2

50

~51!

can be satisfied at the same pointṽ0
(2)5v2 only when

@c0
2~v22vg,0!

2221#50. ~52!

Equation~52! yields the following formula for the velocity
of a wide jam:

vg,05v22c0 i.e., vg,05V~r2!2c0 , ~53!

where the expressionv25V(r2), Eq. ~49!, has been taken
into account. Based on Eq.~27!, it can be seen that the de
rivative dṽ0

(2)/dx8 is positive across the entire intervalv3

. ṽ0
(2).v1 , since F( ṽ0

(2) ,q0* ,vg,0).0 and @c0
2( ṽ0

(2)

2vg,0)
2221#,0 at v3. ṽ0

(2).v2 and F( ṽ0
(2) ,q0* ,vg,0),0

and @c0
2( ṽ0

(2)2vg,0)
2221#.0 at v2. ṽ0

(2).v1 . Hence the
solution ṽ0

(2)(x8) actually corresponds to the downstrea
front of a jam, that is, to the area where the vehicle sp
increases with increasingx8.

Finally, it can be seen that the solutionv(x)5 ṽ0
(2)(x8)

1 v̄0
(2)(z) describes the shape of a wide jam atx0<x<L

@Fig. 1~a!#. It means that in areas sufficiently removed fro
the both fronts of the wide jam, where the traffic flow is
one of the homogeneous states, the average speed an
-
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density of the vehicles are equal to the valuesv1 ,v3 and
r1 ,r3 inside (v1 ,r1) and outside (v3 ,r3) the jam, respec-
tively.

Let us now consider the functionv(x)5ṽ0
(1)(x8)1v̄0

(1)(z)
which describes a wide jam at 0<x<x0 @Fig. 1~a!# and de-
termine the shape of a smooth distributionṽ0

(1)(x8). Based
on boundary conditions~30! it can be seen that the bounda
value ṽ0

(1)(2x0) of function ṽ0
(1)(x8) is equal to ṽ0

(2)(L
2x0), and henceṽ0

(1)(2x0)5v3 @see Eq.~50!#. It follows
from Eq. ~27! that Eq.~27! has no solutionsṽ0

(1)(x8) which
satisfy the boundary conditionṽ0

(1)(2x0)5v3 , with the ex-
ception of the homogeneous solutionṽ0

(1)(x8)5v3 @Fig.
3~b!#. To prove this, let us take into account thatv3 is the
root of Eq. ~45!, and the functionF( ṽ0

(1) ,q0* ,vg,0) in Eq.
~27! is therefore zero at a value ofṽ0

(1)5v3 . Let us assume
first that a solutionṽ0

(1)(x8) corresponds to a decrease in t
average speed of vehicles atx8.2x0 , i.e., ṽ0

(1)(x8)ux8.2x0

,v3 . In this case the conditionF( ṽ0
(1) ,q0* ,vg,0).0 is met

@Fig. 2~b!#. On the other hand, sincev3.v2 @Fig. 2~b!#, one
can see based on~52! that the coefficient @c0

2( ṽ0
(1)2

vg,0)
2221# in Eq. ~27! is negative for the valuesṽ0

(1) near
v3 . It thus follows from Eq.~27! that dṽ0

(1)/dx8.0. The
latter result contradicts the initial assumptionṽ0

(1)(x8),v3 at
x8.2x0 . A similar contradiction arises with a solution co
responding to an increase in the average speed atx8.

2x0 . Therefore, one can conclude thatṽ0
(1)(x8)5v3 and that

the shape of a wide jam at 0<x<x0 is indeed described by
the solution

v~x!5 ṽ0
~1!~x8!1 v̄0

~1!~z !5 ṽ0
~2!~L2x0!1 v̄0

~1!~z !. ~54!

This analysis demonstrates that

ṽ0
~1!~0!5 ṽ0

~2!~L2x0!5v3 and ṽ0
~2!~0!5v1 .

As a result, formula~44! can be written as

@V~r3!2vg,0#@V~r1!2vg,0#5c0
2, ~55!

where expressions~49! have been taken into account.
Three equations

r iV~r i !2r ivg,02q0* 50, i 51,2,3, ~56!

which follow from Eq.~47! at r5r i ( i 51,2,3), and which
are used together with Eqs.~53! and~55! can be used to find
five valuesr1 , r2 , r3 , vg,0 , andq0* which determine, to an
accuracy ofm0!1, the parameters of a wide jam. The sol
tions of these simple equations will be given in Sec. III.

III. PARAMETERS OF JAMS

A. Characteristic parameters of traffic flow

The following designations, some of which are illustrat
in Fig. 1~a!, will be used for the main parameters of a wid
jam, that is, for~i! the densities, average vehicle speeds, a
fluxes inside and outside of the jam,~ii ! the velocity of the
jam, and~iii ! the parameterq* , respectively@Eq. ~12!#: ~a!
rmax

m , rmin
m , vmin

m , vmax
m , qmin , andqmax5qout; ~b! vg

m ; and~c!
qs* . These parameters can be determined, to an accurac
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m0!1, by solving Eqs.~53!, ~55!, and~56! for r1 , r2 , r3 ,
vg,0 , andq0* to obtainrmax

m 5r1, rmin
m 5r3, vmin

m 5v15V(r1),
vmax

m 5v35V(r3), qmin5rmax
m vmin

m , qmax5rmin
m vmax

m , vg
m5vg,0 ,

and qs* 5q0* . Therefore, conditions~53!, ~55!, and ~56!
make it possible to write simple formulas that determine
desired relationships between all these parameters. In
ticular, the equations

V~rmin
m !2V~Armin

m rmax
m !1c0~12Armax

m /rmin
m !50, ~57!

V~rmax
m !2V~Armin

m rmax
m !1c0~12Armin

m /rmax
m !50 ~58!

can be used to determine the outside and inside densitiesrmin
m

andrmax
m of a wide jam. Meanwhile, the velocity of a wid

jam vg
m , the valueq* 5qs* and the average speed of vehicl

inside vmin
m and outsidevmax

m the wide jam, and the flux o
vehicles escaping the jamqout are given by

vg
m5V~Armin

m rmax
m !2c0 , ~59!

qs* 5c0Armax
m rmin

m , ~60!

vmin
m 5V~rmax

m !, vmax
m 5V~rmin

m !, qout5qmax5rmin
m vmax

m .
~61!

It is also useful to write the formulas expressing the relat
between the densityr2

m5r2 in Eqs. ~56! and ~53! and the
parametersrmin

m ,rmax
m :

V~r2
m!5V~rmin

m !1c0~12r2
m/rmin

m !, ~62!

r2
m5Armax

m rmin
m . ~63!

It should be noted that formulas~57!–~63! are correct to
m0!1.

It can be seen in Eqs.~57!–~61! that if the functionV(r)
and the valuec0 are given, then the wide-jam paramete
rmax

m , rmin
m , vmin

m , vmax
m , qout, vg

m , andqs* may be determined
uniquely. These parameters are independent of the veh
densityrh , other initial conditions, or road lengthL. These
parameters are therefore thecharacteristic~i.e., intrinsic! pa-
rameters of a traffic flow, as is also confirmed by a numer
investigation@6#. These characteristic parameters are mer
the functions of the traffic parameters determining the fu
tion V(r) and valuec0 in Eq. ~2!.

The characteristic parameters determined by formu
~57!–~61! of the present theory appear to be in good agr
ment with the results of the numerical investigations of ja
@6#. The parameters of traffic flow@valuesb, v f , andr i in
Eq. ~5!, andc0 in Eq. ~2!# used in Ref.@6# and contained in
Eqs. ~57!–~61! do indeed make it possible to findrmax

m

>0.683r̂, rmin
m >0.141r̂, vmin

m >0, vmax
m >1.75l 0 /t, qout

>0.246r̂ l 0 /t, vg
m>20.454l 0 /t, andqs* >0.310r̂ l 0 /t. The

parameterm0 , Eq. ~11!, of the asymptotic theory is equal i
this case tom0>0.162, i.e., it is not very small. Nevertheles
one can see that these values of the characteristic param
of traffic flow are very close tormax

m >0.709r̂, rmin
m

>0.144r̂, vmin
m >0, vmax

m >1.73l 0 /t, qout>0.250r̂ l 0 /t, vg
m>

20.439l 0 /t, andqs* >0.313r̂ l 0 /t, respectively, which have
been found in the numerical investigation of jams in Ref.@6#.
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It should be noted that a different unit of length,l
5Amr̂21t, was used in Ref.@6#, and that in the case unde
consideration the ratiol 0 / l is l 0 / l 52.4845.

The existence of characteristic parameters of a traffic fl
is linked to the following process of self-organization takin
place in the downstream front of a wide jam: Drivers esca
from a standstill inside the jam at an average rate tha
independent of the initial conditions in the traffic flow, suc
as the density of the initial flow existing prior to jam forma
tion. This self-organizing process depends solely on the t
fic parameters, which are function of the controlling para
eters of a traffic flow@47#.

It should be noted that the self-organizing process invo
ing the escape of vehicles from a standstill inside a wide j
@Fig. 4~a!# is, in essence, a process of queue discharge.
deed, a jam of sufficient width can be viewed as a regu
long queue of vehicles. On the other hand, parameters o
traffic flow upstream from the jam can merely change
length of the queue~the length of the jam!, but they have no
effect on the escape of vehicles from the jam, i.e., from
queue. Obviously the same stationary process of queue
charge is also realized in the downstream front of a wide j
in the case of a local cluster of vehicles@Fig. 4~b!#, and in
many other cases involving a possible formation of a lo
queue of vehicles. In an example of traffic interrupted
traffic lights, a queue discharge occurring when a sufficien
long ‘‘red’’ light has changed to the ‘‘green’’ light, is iden
tical ~after some delay time! ~Fig. 4~c!! to a queue discharge
from a wide jam@Figs. 4~a! and 4~b!#. In other words, all
these different qualitative cases~Fig. 4! involve identical
queue discharges in the sense that they are the same
organizing processes leading to same stationary mov
fronts between the queue and the traffic flow downstre

FIG. 4. A qualitative explanation of the characteristic para
eters of a traffic flow: Distributions of the density in a wide ja
stationary moving along a circular road~a!, in a localized cluster of
vehicles in an open system~b!, and during queue discharge~c!. The
value r5rmax

m is the density inside the jams~a! and ~b! and in a
queue~c!. In these three cases the same self-organization proce
queue discharge occurs and the same stationary front which m
at a velocityvg

m (vg
m,0) is formed. In cases~a!–~c!, downstream

from this front a nearly homogeneous state of a traffic flow is a
self-formed, in which the flux is equal toq5qout and the density is
equal tor5rmin

m .
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56 4207ASYMPTOTIC THEORY OF TRAFFIC JAMS
from the queue. As a result of this self-organizing proce
the same homogeneous state of traffic flow downstream f
the queue is produced, with the flux, density, and aver
speed of vehicles having the same characteristic param
qout, rmin

m , andvmax
m @Fig. 1~a!# as those discussed above.

The width of a wide jamLs @Fig. 1~a!# is determined by
Eq. ~33!, where the valueq0* 5qs* from formula~60! should
be used. Therefore,Ls depends on the densityrh and road
length L. For a given valueL, a lower densityrh yields a
lower value ofLs . This means that at some densityrh a
wide jam can transform into a narrow jam composed of o
two fronts @Fig. 1~b!#.

B. Narrow jams

The fronts of a narrow jam can be investigated using
procedure identical to the one used above for wide jams
this procedure, the characteristic length of change of the
erage vehicle speed and density is equal tom0l 0 , or to l 0 ,
determined by the sharp distribution in the case of the
stream front, and by the smooth distribution in the case
the downstream front, respectively. In contrast to the par
eters of a wide jam, the parameters of a narrow jam~narrow
cluster! are functions of densityrh .

It can be seen that formula~53! can also be used to de
termine the parameters of a wide jam, but the following f
mulas should be used for narrow jams instead of formu
~56!, ~49!, and~55!, which are valid for wide jams:

r iV~r i !2r ivg,02q0* 50, i 52,3,

rmax,0~vmin,02vg,0!2q0* 50, ~64!

v i5V~r i !, i 52,3, ~65!

~vmin,02vg,0!@V~r3!2vg,0#5c0
2, ~66!

wherermax,0is the maximum density andvmin,0 the minimum
average speed of vehicles in the center of a narrow j
which are determined to an accuracy ofm0!1. It should be
noted that formula~66! follows from Eq.~44! if the expres-
sions ṽ0

(2)(0)5vmin,0 and ṽ0
(1)(0)5V(r3), which are valid

for narrow jams, are used in the latter formula. The narro
jam parameters such as the maximum and minimum de
ties rmax and rmin , the maximum and minimum vehicl
speedsvmax andvmin @Fig. 1~b!#, the jam velocityvg , and the
parameterq* , calculated to an accuracy ofm0!1, are given
as rmax5rmax,0, rmin5r3, vmax5v35V(r3), vmin5vmin,0,
vg5vg,0 , and q* 5q0* , and are thus related to Eq
~53! and~64!–~66!. The external and internal fluxes of a ja
apparently areqout5qmax5vmaxrmin and qmin5vminrmax.
However, contrary to the case of a wide jam, the densityrmax
and average speedvmin in the center of a narrow jam do no
obey formula~49! at i 51. Instead of this formula, the inte
gral condition~33! as well as expressions~53! and~64!–~66!
should be used to find the parameters of a narrow jam.
this reason, the parameters of a narrow jam depend on
densityrh and road lengthL.

Of the utmost interest, however, is the case in which
road lengthL is much larger than the width of a narrow jam
that is, whenL@ l 0 . In this case the dependence of t
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narrow-jam parameters on the densityrh can be found ana-
lytically. To do this, let us write the formulas related to th
parametersrmin , rmax, vg , andq* in terms ofr2 . Accord-
ing to Eqs.~53! and ~64!–~66!, the result is@48#

rmax5r2
2/rmin , V~r2!5V~rmin!1c0~12r2 /rmin!,

~67!

vg5V~r2!2c0 , q* 5c0r2 . ~68!

Meanwhile, the integral condition~33! can be written as

rminL1E
0

L2x0
@ r̃0

~2!~x8!2rmin#dx85rhL, ~69!

where r̃0
(2)(x8)5q0* /@ ṽ0

(2)(x8)2vg,0# describes, in terms o
the zeroth order ofm0!1, the density distribution existing in
the downstream front region. Equation~69! can be deduced
from Eq. ~33! if formulas ṽ0

(1)(x8)5v35V(r3), andrmin5
r3 , and Eq.~64! are taken into account ati 53. In view of
Eq. ~69!, it can be seen that the number of vehicles trapp
within a narrow jam atL@ l 0 ~more particularly, atL→`! is
negligible in comparison with the total number of vehicl
on the roadN5rhL, i.e., rmin→rh at L→`. The function
r̃0

(2)(x8) does indeed reachrmin outside a narrow jam of
width l 0 , making it possible to ignore the second term on t
left-hand side of Eq.~69! at L→` to give rmin5rh . As a
result, the following approximate equations can be obtain
from Eq. ~67!:

rmax5r2
2/rh , ~70!

V~r2!5V~rh!1c0~12r2 /rh!. ~71!

C. Boundary „threshold… density and flux of jam’s existence

An analysis of Eqs.~70! and ~71!, shown in Fig. 5, dem-
onstrates that there is a boundary~threshold! density rh
5rb which corresponds to a minimum amplitudermax
5rmax,b @Fig. 6~a!# and a maximum velocityvg5vg,b of a
stable narrow jam@Fig. 6~b!#. This conclusion conforms to
the results of the numerical investigation@6#. Indeed, let us
first consider solutions of the equation

FIG. 5. A qualitative explanation of the solution of Eq.~72!: A
fragment of the functionV(r) ~curveH!; straight lines 1, 2, and 3
correspond to the functionc(r,rh) related to different densities
rh :rb,rh,rmin

m ~line 1!, rh5rb ~line 2!, andrh5rc1 ~line 3!.
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V~r!5c~r,rh! where c~r,rh!5V~rh!1c0~12r/rh!,
~72!

and where the densityrh is a parameter. The roots of Eq
~72!, which are obviously the possible values of the dens
r2 in Eq. ~71!, can be found as the points at which functio
V(r) ~curve H in Fig. 5! intersects with a linec(r,rh)
~straight lines 1, 2, and 3 in Fig. 5!.

Equation ~72! has two solutions in the density interv
~line 1, pointsa andc, in Fig. 5!. Therefore, as follows from
Eqs. ~70! and ~71!, there are two different solutions for th
densityr2 corresponding to two narrow jams with differe
amplitudes. These two solutions have different parame
and exist at the same densityrh ~Fig. 6!. The greater solution
r2 ~point c! corresponds to a narrow jam with a higher a
plitude, whereas the lesser solutionr2 ~point a! corresponds
to a narrow jam with a lower amplitude. Numerical calcu
tions have shown that the narrow jam of higher amplitude
stable and that the narrow jam of lower amplitude is unsta
~Fig. 6!.

As the densityrh decreases, the larger solutionr2 of Eq.
~72! decreases and the lower solutionr2 increases; therefore
according to Eq.~70!, the amplitude of the stable jam o
higher amplitude decreases, and the amplitude of the
stable jam of lower amplitude increases. The two solutio
of Eq. ~72! converge at a densityrh5rb . The related solu-
tion r2 designated in Fig. 5 asr25r2

b . The corresponding
line 2 given byc(r,rh), Eq. ~72!, is tangent to the function
V(r). Therefore, densityrh5rb and densityr25r2

b can be
determined using the equations

V~r2
b!5V~rb!1c0~12r2

b/rb!, dV/drur
2
b52c0 /rb .

~73!

The densityrh5rb given by Eq.~73! determines the bound
ary ~threshold! density of traffic jam existence, because E
~70! and~71! have no solutions atrh,rb , and no solutions
therefore exist in the form of traffic jams. The correspond

FIG. 6. A qualitative explanation of evolving of a jam for th
case in which the densityrh is changed: A qualitative shape o
dependencies of the jam amplitudermax ~a!, of the jam velocityvg

~b!, and of the parameterq* ~c! on the densityrh . In ~c!,
q* urh5rc1

5c0rc1 . Dotted lines correspond to unstable states. T
arrows symbolically show a transformation of a narrow stable j
into a wide jam.
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boundary flux isqb5rbV(rb). It should be noted that the
density isrmin5rh at L→`. Let the valuermin related to the
boundary densityrh5rb be designated asrmin5rmin,b . This
value is equal torb : rmin,b5rb , i.e., it is in agreement with
the results of the numerical calculations@6#,

qb5qout, ~74!

whereqout5rminV(rmin) is the flux in the outflow from the
jam. The physical explanation of formula~74! is very simple
@6#: if a flux into a jamqh exceedsqout, the width of the jam
Ls increases. Otherwise, ifqh,qout, then Ls decreases
monotonically, and the jam gradually disappears. Therefo
if qh,qout, then a jam can be neither created nor sustai
for a long time, i.e., the boundary fluxqb at which the jam
can still be sustained is indeedqout.

As follows from Eqs.~68! and~70!, at the boundary den
sity rh5rb the amplitude of the stationary jamrmax

5rmax,b , its velocity vg5vg,b , and the valueq* 5qb* are
given by

rmax,b5~r2
b!2/rb , vg,b5V~r2

b!2c0 , qb* 5c0r2
b .

~75!

The densityrmin outside a narrow jam is slightly lower tha
the densityrmin

m outside a wide jam, i.e.,rb,rmin
m . There-

fore, the flux out from narrow jamsqout is also slightly lower
than the corresponding fluxqout out from a wide jam. As
follows from numerical calculations, these fluxes differ on
slightly. For this reason, formula~74! is roughly valid even if
the valueqout for the flux out from a wide jam, Eq.~61!, is
used in this formula@49#.

D. Evolution of narrow jams with increase in density

The analysis in Sec. III C was made for the density ran
rb,rh,rmin

m , where there are two solutions related to na
row jams: a stable one at a higher amplitude and an unst
one at a lower amplitude@Fig. 6~a!#. As the densityrh in-
creases, the amplitude of the stable jam of higher amplit
increases, and the amplitude of the unstable traffic jam
lower amplitude decreases@Fig. 6~a!#. Whenrh approaches
the characteristic densityrmin

m , which is realized outside a
wide jam @Fig. 1~a!#, the narrow jam of higher amplitude
gradually transforms into a wide jam with the amplitudermax

m

~this transformation is shown schematically with arrows
Fig. 6!. A further increase inrh merely increases the width
of the jamLs , but has no effect on the other parameters
the jam, which remain equal to the characteristic parame
determined by Eqs.~57!–~61!.

A narrow unstable jam of lower amplitude evolves diffe
ently when the densityrh is increased. As follows from an
analysis of the roots of Eq.~72! ~Fig. 5!, the higher the
densityrh , the lower the valuer2 , which corresponds to a
narrow jam of lower amplitude~point a in Fig. 5!. Therefore,
as follows from formula~70! that the amplitude of a narrow
unstable jamrmax gradually decreases with increasing de
sity rh @dotted line in Fig. 6~a!#. If the densityrh is increased
further, the valuerb merges with the root of Eq.~72! under
consideration when the linec(r,rh), Eq. ~72!, becomes tan-
gent to the curveV(r) ~line 3 in Fig. 5!. In the point of
contactr5rh the slope (dV/drurh

) of the curveV(r) equals

e
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the slope (2c0 /rh) of the line c(r,rh), Eq. ~72!; i.e., the
condition

dV/drurh
52c0 /rh ~76!

is fulfilled. A comparison between Eqs.~76! and ~7! indi-
cates that this condition determines the critical densityrh
5rc1 of stability of a homogeneous traffic flow with respe
to global perturbations of small amplitude whenL→`.
Therefore, atrh→rc1 the amplitudermax2rh5r2

2/rh2rh of
an unstable narrow jam tends to zero@Fig. 6~a!#.

It should be noted that Kurtze and Hong@29# found that at
a densityrh near the critical pointrh5rc1 the form of a
low-amplitude unstable traffic jam can be described with
aid of the perturbed Korteweg–de Vries equation deduce
Ref. @29# from the model@Eqs.~1!–~3!#. It can be shown tha
for a low-amplitude jam the approach based on the sing
perturbation theory holds, and that formulas~70! and ~71!
remain valid if the densityrh satisfies the condition (rc1

2rh)rc1
21>m0 ~wherem0!1!, i.e., if rh<rc12m0rc1 .

The manner in which the jam’s velocityvg and the pa-
rameterq* depend upon the densityrh can be determined
based on the consideration presented above@Figs. 6~b! and
6~c!#. These dependencies follow from Eqs.~68! and from
the formulavq5V(rh)2c0 ~e.g., Ref.@7#! for the phase ve-
locity of small-amplitude perturbations near the homog
neous state of a traffic flow at densityrh5rc1 , Eq. ~7!.

IV. DISCUSSION AND CONCLUSIONS

The asymptotic theory of traffic jams presented h
makes it possible to find simple analytical expressions for
main parameters of large-amplitude jams usually observe
experimental observations. An analysis of these analyt
expressions shows that, according to the results of nume
@6# and experimental@4# investigations, a traffic flow has
characteristic parameters that are independent of the in
conditions of the traffic flow. Good agreement exists b
tween the characteristic parameters derived from the ana
cal expressions of the present theory and the characte
parameters obtained in the numerical investigation@6#. These
two approaches, that is, the numerical investigation@6# and
the analysis of analytical expressions, point to the existe
of a boundary~threshold! density rb and a corresponding
boundary~threshold! flux qb of jam formation. If the flux of
a traffic flow is lower thanqb , a jam can be neither forme
nor sustained for a long time in this traffic flow.

It should be noted that the fronts of a traffic jam~Fig. 1!
in which both the density and the average vehicle speed
dergo noticeable spatial variations may be viewed as sh
waves of a traffic flow. Shock waves also commonly occu
other nonlinear media, and in those associated with gas
namics in particular@37#. On the other hand, in 1955 Light
hill and Whitham put forth a theory of shock~kinematic!
waves in traffic flows@38#. It may be reasonable to compa
the traffic-jam properties obtained based on the numer
investigation@6# and the theory presented in this paper,
the one hand, and the results obtained based on the w
known Lighthill-Whitham-theory of traffic flow~Sec. IV B!
and the shock waves investigated in gas dynamics~Sec.
IV C!, on the other hand. Before making this comparis
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however, we will briefly consider in Sec. IV A the propertie
of jams in an actual traffic flow, and compare these exp
mental properties of jams@4# with theoretical predictions.

A. Comparison of theoretical and experimental results

Based on the experimental observations of a large num
of wide jams on numerous German highways, Kerner a
Rehborn found that an actual wide jam has the following@4#
characteristics.

~i! A jam can move along a highway for a long time whi
preserving its shape and main parameters.

~ii ! A stable localized complex structure consisting of se
eral jams can exist on a highway.

~iii ! When the ‘‘controlling’’ parameters of traffic are
given and ‘‘free’’ flow is formed in the outflow from the
jam, the averaged fluxes out from various wide jams
roughly equal to each other. The downstream fronts of v
ous wide jams are essentially the same stationary mov
structure. Therefore, the mean characteristics~velocity, etc.!
of these jam’s fronts are virtually constant over time.

~iv! An essentially stationary moving traffic jam can ex
on a highway.

~v! The flux of a ‘‘free’’ traffic flow can be considerably
higher than the flux out from a wide jam.

As follows from the results of the numerical calculatio
performed in Ref.@6# and from the results of the analytica
theory presented in the paper the macroscopic model@Eqs.
~1!–~3!# is capable of explaining all the experimental pro
erties of traffic jams~i!–~v! mentioned above. The theor
and the experiments have been compared in further deta
numerically simulating the case presented in the article@4#
based on the traffic flow model Eqs.~1!–~3! and Eq. ~5!
~Figs. 7 and 8! @50#. The initial flux distribution and initial
average vehicle speed distribution were based on the ex
mental data obtained at 14:09~these initial distributions ig-
nored fluctuations and other small changes in the variab!
@Fig. 7~a!# @51#. At this time, both jams were already withi
the highway section under consideration~see Figs. 2 and 3 in
Ref. @4#!. Figures 7~b! and 7~c! show the manner in which
the jams developed between 14:09 and 14:24, when b
jams were still within the highway section under consid
ation@4#. Just as in the experiment~Figs. 2 and 3 in Ref.@4#!,
both the structures and the characteristics of the two ja
~including the velocities of the downstream fronts of jam
and the flux out from the jams! remain unchanged during th
propagation of the jams along the highway@Figs. 7~b! and
7~c!#. The experimental property~v! of a jam~Fig. 4 in Ref.
@4#! is also realized by the model Eqs.~1!–~3! under consid-
eration. The latter can be seen in Fig. 8, where, as follo
from numerical calculations, the maximum possible flux in
metastable state of a homogeneous traffic flowqcr ~see Ref.
@6#! is noticeably higher than the flux out from a wide ja
qout.

B. Traffic jams and kinematic waves
in Lighthill-Whitham theory

An assumption that flux is solely a function of densi
makes it possible to arrive at the theory of kinematic wav
developed by Lighthill and Whitham~LW theory! in 1955
@38# rather than at the model Eqs.~1!–~3!, in which the de-
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FIG. 7. A comparison of a propagation of jams based on the models~1!–~3! and the experiments made in Ref.@4#: The initial
distributions of the fluxq, the average speed of vehiclesv, and the densityr ~a! and the distributions of these variables during a propaga
of the jams along a road~b! and ~c!. ~d! shows the corresponding dependenciesq(t), v(t), andr(t) at x54.4 km. The parameters of th
model arec0539.059 km/h,r̂5175 vehicles/km. The functionV(r) is given by Eq.~5! at v f591.649 km/h,r i050.2r̂, b50.05r̂, d
51.125431027, and m050.48. The characteristic parameters of traffic flow found, i.e., the parameters of the downstream front
second jam, arermax

m .120 vehicles/km,qout.1500 vehicles/h,vg
m.214.6 km/h,rb.rmin

m .19 vehicles/km;vmin
m .0, andvmax

m .79 km/h.
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pendence of flux onboth the densityand on the average
vehicles speed is of crucial importance. Because in the
theory the flux is related to the density in accordance w
the algebraic relation

q5Q~r! where Q~r!5rV~r!, ~77!

the equation of motion of vehicles is no longer necessary
the LW model. Hence this model reads

]r

]t
1c~r!

]r

]x
50 where c~r!5

dQ

dr
~78!

and the functionQ(r) is given by Eq.~77!. Solutions pro-
vided by the LW model can be waves with group veloc
h

r

c(r) @10,38#. When the density is within a range in whic
Q(r) is convex, regions of lower densities propagate fas
than regions of higher densities. Therefore, negative gr
ents decrease, while positive gradients increase. Ultimat
discontinuities~shocks! appear. If a shock has formed,
moves at the velocity@10,38#

vs5
Q~r1!2Q~r2!

r12r2 , ~79!

wherer1 andr2 are the densities immediately in front an
behind the shock, respectively. The amplitude of the sh
fades over time, however@10#. A homogeneous state of traf
fic flow is finally established. These conclusions are based
the analytical investigations of shocks performed
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Whitham ~see Ref.@10#, pp. 46–52!. Therefore, any homo
geneous state of traffic flow in the LW model is stable b
cause every initial density perturbation will ultimately fad
over time @10,38#. In contrast, the model Eqs.~1!–~3! @7#
show that, if the flux is higher than the boundary~threshold!
value qb , Eq. ~74!, a critical localized perturbation grow
when its amplitude has exceeded a certain value. This re
in the self-formation of traffic jams@6#. The velocity of the
downstream front of a wide jamvg

m , Eq. ~59!, can be written
in the form

vg
m5

Q~rmax
m !2Q~rmin

m !

rmax
m 2rmin

m . ~80!

FIG. 8. A representation of the downstream front of the sec
jam shown in Figs. 7~b! and 7~c! ~line J! and of the part of the
fundamental diagram~curve H! which corresponds to a stable (r
,rb) and a metastable (rb<r,rcr) states@6# of a homogeneous
traffic flow. Results of the numerical calculations. The model a
the parameters are the same as in Fig. 7.
-

lts

It is worth mentioning that expression~80! formally cor-
responds to the shock velocity~79! in the LW theory of
kinematic waves. In the LW theory for a traffic flow, how
ever, the densitiesr1 and r2 in Eq. ~79! can be arbitrary
points on the fundamental diagramQ(r) @38#. In contrast,
the equation of motion~2!, which is given by the model Eqs
~1!–~3! but is absent in the LW theory, plays adecisive role
in jam formation. Indeed, this equation provides local fee
back for a traffic flow@6,7#, resulting in the self-formation of
traffic jams. This equation also determines the shape of
fronts and limits the possible shock densitiesr1 and r2

which are related to the downstream front of a wide jam
the twodistinct valuesr15rmax

m and r25rmin
m determined

by Eqs.~57! and ~58!.
The LW model, Eqs.~77! and ~78!, was numerically

simulated to obtain a more complete picture of the behav
of traffic jams in the LW model~Figs. 9–12! @52#. For this
purpose, the program and algorithm@53# based on the Go-
dunov’s scheme@54,55# were used. In the example shown
Fig. 9 it is assumed that a jam has already formed in a tra
flow by the timet50 @Fig. 9~a!, t50#. The jam disappears
monotonously as it propagates further along the highw
~Fig. 9, t55 and 30 min!. Therefore, the LW model depict
a disappearing jam, with the flux upstream from the ja
equaling the flux downstream from the jam, whereas the
periments in this case depict the formation of an essenti
stationary moving jam on the highway@4#. It can be expected
that if the flux upstream from the jam~i.e., the flux into the
jam qin! is higher than the flux downstream from the jam~the
flux in the outflow from the jamqout!, the jam will not dis-
appear and its width will monotonously increase over tim
However, the manner in which the jam propagates~Fig. 10!
is qualitatively identical to the case described above~Fig. 9!,
i.e., according to the LW model and contrary to the expe
ments@4,5#, the jam disappears under such conditions~Fig.
10!.

d

d

l

is equal
FIG. 9. The propagation of a traffic jam in the LW model~78! with cyclic boundary condition@52#: ~a! the distributions of the density
in different moments of time;~b! the kinetic of the jam’s propagation in the (r,q) phase plane. Dotted lines in~b! represent the fundamenta
diagramQ(r)5rv f(12r/ r̂) @10# which was used in the LW model~78!, v f5110 km/h,r̂5120 vehicles/km. The initial distribution of the
density (t50): the density inside the jam is equal to 120 vehicles/km, the width of the jam is 2 km, and the density outside the jam
to 40 vehicles/km.
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FIG. 10. The propagation of a traffic jam in the LW model~78! when the flux into the jam exceeds the flux out from the jam:~a! the
distributions of the density in different moments of time;~b! the kinetic of the jam propagation in the (r,q) phase plane. Dotted lines in~b!
represent the fundamental diagram. The initial distribution of the density (t50): the density upstream from the jam is equal to
vehicles/km, the density downstream from the jam is equal to 20 vehicles/km. The boundary conditions arer(0,t)540 vehicles/km and
r(L,t)520 vehicles/km. The other parameters are the same as in Fig. 9.
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The examples presented in Figs. 9 and 10 correspon
the behavior of a jam described by the LW model havin
convex fundamental diagramQ(r). When the fundamenta
diagramQ(r) has a concave part~Fig. 11!, the initial jam
disappears in the same manner as shown in Figs. 9 and
although this disappearance has certain distinctive featu
In particular, shock waves are formed both upstream
downstream from the jam~Fig. 11, t55 min! @56,57#. Nev-
ertheless, the properties characterizing jam propagatio
the LW model@Fig. 11~a!# are qualitatively different from
to
a

10,
s.
d

in

the experimental properties of jams~i!–~v! discussed in Sec
II A. For example, the experiments show that a jam’s dow
stream front moves at an essentially constant veloc
whereas the LW model indicates that the velocityvs of the
shock wave, which is related to the downstream front of
jam, varies markedly over time. In particular, the velocity
vs'213 km/h at t50, vs'216 km/h at t55 min, and
vs'252 km/h att518 min ~Fig. 11!.

For a more detailed comparison of the LW model and
experimental observations, the density distribution exp
s

ity
is equal
FIG. 11. The propagation of a traffic jam in the LW model~78! with a cyclic boundary condition@52# when the fundamental diagram ha
a concave part:~a! the distributions of the density in different moments of time;~b! the kinetic of the jam propagation in the (r,q) phase
plane. Dotted lines in~b! represent the fundamental diagramQ(r), which is the same as in Fig. 7. The initial distribution of the dens
(t50): the density inside the jam is equal to 140 vehicles/km, the width of the jam is equal to 2 km, and the density outside the jam
to 20 vehicles/km.
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FIG. 12. A comparison of a propagation of jams based on the LW model~78! ~see Ref.@52#! and the experiments made in Ref.@4#: ~a!
The initial distribution of the densityr and the corresponding distributions of the fluxq and of the average speed of vehiclesv ~b! and~c!.
The distributions of the density and the corresponding distributions of the fluxq and of the average speed of vehiclesv during the
propagation of jams along a road. The fundamental diagramQ(r) is the same as in Fig. 7.
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mentally observed~Fig. 2 in Ref.@4#! at 14:09 was used a
the initial condition@Fig. 12~a!#. The following results were
obtained:~i! In contrast to the experimental observations@4#,
according to the LW model, the two jams merged in a m
8 min, at 14:17@Fig. 12~b!#. The amplitude of the resulting
density distribution did not increase following this merg
but continued to fade over time in the same manner a
Figs. 9–11.~ii ! In contrast to the experimental observatio
@4#, the LW model failed to yield a downstream jam fro
with an essentially stationary moving structure. In particu
the velocity of the downstream front of the second jam
creased in magnitude over time: it wasvs'214.4 km/h at
14:09, andvs'231 km/h at 14:15. After the two jam
merged, the results werevs'241 km/h at 14:17 andvs'
252 km/h at 14:24.~iii ! The entire initially localized two-
jam structure gradually disappeared according to the
model but retained its initial properties according to expe
e

in

,
-

-

mental observations@4#. It can thus be concluded that th
LW theory of kinematic waves cannot explain properties~i!–
~v! of experimentally observed traffic jams~Sec. IV A!.

C. Traffic jams and shock waves in gas dynamics

Let us compare the properties of the fronts of traffic ja
with the properties of shock waves in gases. Integrating
~14! over the upstream-front region yields

m0

dv
dxU

1

2

2qs* S c0
2

v2vg
m 1v2vg

mD U
1

2

1E
1

2

F~v,qs* ,vg
m!dx50,

~81!

where the indexes 1 and 2 correspond, respectively, to
average vehicle speedv upstream (v5vmax

m ) and down-
stream (v5vmin

m ) from the upstream front of a wide jam
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Since the upstream front of the jam is on the order ofm0
!1 and the derivativedv/dx in the area outside the shar
upstream front is on the order of 1, the first and last terms
left-hand side of Eq.~81! can be ignored to an accuracy
m0!1 to obtain

p~rmin
m !1rmin

m ~vmax
m 2vg

m!25p~rmax
m !1rmax

m ~vmin
m 2vg

m!2.
~82!

This equation is obtained using formula~12! and the expres-
sion p(r)5c0

2r. Based on Eqs.~12! and~82!, the following
formula can be obtained:

~vmax
m 2vg

m!~vmin
m 2vg

m!5c0
2, ~83!

which has already been derived from the asymptotic the
~55!.

It should be noted that formula~83! also appears in the
well-known gas-dynamic theory of shock waves in the c
of polytropic gases~e.g., Ref.@37#!. Formulas~12! and ~82!
do indeed have the form of continuity conditions for t
mass and impulse fluxes, respectively, in a reference sys
moving at velocityvg5vg

m . The same conditions are met b
shock waves in gases@37#. However, thedownstreamfront
of a jam has no analogy for the continuity condition of
impulse flux. This front is a stationary moving structu
formed by self-organizing processes of a traffic flow. T
shape and parameters of the downstream front are obta
based on Eq.~27! for a smooth distribution derived under th
assumption that the first term in Eq.~14! is negligibly small
and can be omitted.

Therefore, there is an important difference between
shock wave in a gas and a traffic jam. The parameters
shock wave in a gas are determined by the continuity co
tions for the mass, impulse, and energy fluxes across
shock wave@37#, and are hence dependent upon the para
eters of the initial states of the gas upstream and downstr
from the wave. In contrast to this, the parameters of
downstream front of a wide jam represent the character
parameters of a traffic flow because they are independen
the initial state of the traffic flow. The qualitative differenc
between the traffic flow approach and the gas-dynamic
proach can be understood even better in view of the fact
the parameters of the upstream front of a wide jam in a tra
flow @particularly, the valuesvmax

m and vmin
m and the front

velocity vg
m in Eq. ~83!# cannot be computed without solvin

Eq. ~27! for the downstream front of the jam.

ACKNOWLEDGMENTS

We would like to thank G. Breuel for her fruitful sugge
tions, and M. Schilke and A. Brenneis for their help in ca
rying out the numerical calculations.

APPENDIX

In this appendix, Eqs.~27! and~29! are deduced togethe
with conditions ~30!–~33! in accordance with the singula
perturbation method@46#. Equation~14! can be rewritten in
the form
n

ry

e

m

ed

a
a
i-
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-
m

e
ic
of

p-
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c

-

m0

d2v
dx2 5q*

d

dx
G~v,vg!2F~v,q* ,vg!, ~A1!

where

G~v,vg!5v1c0
2~v2vg!21. ~A2!

Substituting Eq.~19! into Eq. ~A1! yields a set of equations

1

m0

d2v̄ ~m!

dz2 1m0

d2ṽ ~m!

dx82

5
q*

m0

d

dz
Ḡ~z,m0!1q*

d

dx8
G„ṽ ~m!~x8,m0!,vg…

2F̄~z,m0!2F„ṽ ~m!~x8,m0!,q* ,vg…, m51,2,

~A3!

where

F̄~z,m0!5F„v̄ ~m!~z,m0!1 ṽ ~m!~m0z,m0!,q* ,vg…

2F„ṽ ~m!~m0z,m0!,q* ,vg…, ~A4!

Ḡ~z,m0!5G„v̄ ~m!~z,m0!1 ṽ ~m!~m0z,m0!,vg…

2G„ṽ ~m!~m0z,m0!,vg…. ~A5!

Next, Eqs. ~23!–~26! are substituted into Eq.~A3!
and the nonlinear functions F,̄Ḡ @Eqs. ~A4! and ~A5!#, and
G„ṽ (m)~x8,m0!,vg…, F„ṽ (m)(x8,m0),q* ,vg… are expanded as
a series inm0 (m0!1). The terms of the same order inm0
on the left and right sides of Eq.~A3! are then equated, an
the terms dependent onx8 andz @Eq. ~20!#, respectively, are
separated. As a result, from Eqs.~A3! and~A2! in the zeroth
approximation inm0 Eqs.~27! and~29! can be deduced. It is
taken into account here that

Ḡ~z,m0!5 v̄0
~m!~z !1c0

2
„v̄0

~m!~z !1 ṽ0
~m!~0!2vg,0…

21

2c0
2
„ṽ0

~m!~0!2vg,0…
211O~m0!, m51,2.

~A6!

In the zeroth approximation inm0 , the boundary condi-
tions ~30! can be determined based on Eqs.~15!, ~19! and
~21!. Substituting expansions~24! into Eq. ~21! leads to Eq.
~32!. Equation~31! is obtained by substituting Eq.~19! and
expansions~23! and ~24! into Eq. ~22!, taking Eq.~20! into
account, and equating zero-order terms inm0 . Condition
~33! is deduced from Eqs.~18!, ~19!, and ~23!–~26!, taking
into account that functionsv̄0

(m)(z) (m51,2) are different
from zero only in the region where the sharp upstream fr
is located. The width of the front is a value on the order
m0l 0 . Integration over this region yields only a small cont
bution in Eq. ~18!, which should be ignored in the zerot
approximation inm0 .
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